【題目】某市計劃在一片空地上建一個集購物、餐飲、娛樂為一體的大型綜合園區,如圖,已知兩個購物廣場的占地都呈正方形,它們的面積分別為13公頃和8公頃;美食城和歡樂大世界的占地也都呈正方形,分別記它們的面積為公頃和
公頃;由購物廣場、美食城和歡樂大世界圍成的兩塊公共綠地都呈三角形,分別記它們的面積為
公頃和
公頃.
(1)設,用關于
的函數
表示
,并求
在區間
上的最大值的近似值(精確到0.001公頃);
(2)如果,并且
,試分別求出
、
、
、
的值.
科目:高中數學 來源: 題型:
【題目】隨著城市地鐵建設的持續推進,市民的出行也越來越便利.根據大數據統計,某條地鐵線路運行時,發車時間間隔t(單位:分鐘)滿足:4≤t≤15,N,平均每趟地鐵的載客人數p(t)(單位:人)與發車時間間隔t近似地滿足下列函數關系:
,其中
.
(1)若平均每趟地鐵的載客人數不超過1500人,試求發車時間間隔t的值.
(2)若平均每趟地鐵每分鐘的凈收益為(單位:元),問當發車時間間隔t為多少時,平均每趟地鐵每分鐘的凈收益最大?井求出最大凈收益.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列的各項都是正數,若對于任意的正整數
,存在
,使得
、
、
成等比數列,則稱函數
為“
型”數列.
(1)若是“
型”數列,且
,
,求
的值;
(2)若是“
型”數列,且
,
,求
的前
項和
;
(3)若既是“
型”數列,又是“
型”數列,求證:數列
是等比數列.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=(2x-4)ex+a(x+2)2(x>0,a∈R,e是自然對數的底數).
(1)若f(x)是(0,+∞)上的單調遞增函數,求實數a的取值范圍;
(2)當a∈時,證明:函數f(x)有最小值,并求函數f(x)的最小值的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AD∥BC,ADC=
PAB=90°,BC=CD=
AD.E為棱AD的中點,異面直線PA與CD所成的角為90°.
(I)在平面PAB內找一點M,使得直線CM∥平面PBE,并說明理由;
(II)若二面角P-CD-A的大小為45°,求直線PA與平面PCE所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知一列函數,設直線
與
的交點為
,點
在
軸和直線
上的射影分別為
,記
的面積為
,
的面積為
.
(1)求的最小值,并指出此時
的取值;
(2)在中任取一個函數,求該函數在
上是增函數或在
上是減函數的概率;
(3)是否存在正整數,使得
成立,若存在,求出
的值,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com