日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
定義在R上的函數y=f(x),f(0)≠0,當x>0時,f(x)>1,且對任意的a、b∈R,有f(a+b)=f(a)·f(b).

(1)求f(0);

(2)證明對任意的x∈R,恒有f(x)>0;

(3)判斷函數y=f(x)的單調性.

思路分析:本題抽象函數的原型函數即為指數函數,可借助y=2x分析理清解答的思路和方法.(1)利用賦值法求f(0);(2)只需證明當x<0時,f(x)>0;(3)利用定義法判斷單調性.

(1)解:取a=b=0,則f(0)=f(0)·f(0).

∵f(0)≠0,∴f(0)=1.

(2)證明:當x≥0時,f(x)≥1>0成立,

當x<0時,-x>0,f(0)=f(x-x)=f(x)f(-x)=1,

∴f(x)=>0.∴x∈R時,恒有f(x)>0.

(3)解:設x1<x2,則x2-x1>0.

∴f(x2)=f(x2-x1+x1)=f(x2-x1)·f(x1).

=f(x2-x1).

∵x2-x1>0,∴f(x2-x1)>1.

又f(x1)>0,f(x2)>0,

∴f(x1)<f(x2).

∴f(x)在R上是增函數.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

11、定義在R上的函數y=f(x)滿足f(-x)=-f(x),f(1+x)=f(1-x),當x∈[-1,1]時,f(x)=x3,則f(2009)的值是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

13、定義在R上的函數y=f(x)滿足:f(x)=f(4-x),且f(x-2)+f(2-x)=0,則f(508)=
0

查看答案和解析>>

科目:高中數學 來源: 題型:

定義在R上的函數y=f(x)滿足f(3-x)=f(x),(x-
3
2
)f′(x)>0(x≠
3
2
)
,若x1<x2,且x1+x2>3,則有(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

下列四個命題:
①“a>b”是“2a>2b”成立的充要條件;
②“a=b”是“lga=lgb”成立的充分不必要條件;
③函數f(x)=ax2+bx(x∈R)為奇函數的充要條件是“a=0”
④定義在R上的函數y=f(x)是偶函數的必要條件是
f(-x)f(x)
=1”

其中真命題的序號是
①③
①③
.(把真命題的序號都填上)

查看答案和解析>>

科目:高中數學 來源: 題型:

定義在R上的函數y=f(x)滿足f(-x)=-f(x),f(1+x)=f(1-x),當x∈[-1,1]時,f(x)=x3,則f(2011)=
-1
-1

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 神马久久久久久久 | 日本三级视频在线观看 | 性高湖久久久久久久久 | 一级大毛片| 亚洲欧美激情另类 | 国产精品多久久久久久情趣酒店 | 综合久久网 | 欧美极品视频 | 久久一日本道色综合久久 | 日韩在线视频二区 | 日本亚洲精品成人欧美一区 | 久久久亚洲成人 | 在线播放91| 在线观看理论电影 | 久久激情小视频 | 国产精品二区一区 | 精品久久久久久久 | 成人超碰在线 | 精品国产一区二区三区久久久蜜月 | 久久精品一区二区三区四区 | 欧美一区 | 欧美自拍视频 | 国产精品毛片一区二区 | 四虎影视精品 | 亚洲精品一二三区 | 日韩高清一区二区 | 999在线视频免费观看 | 一区二区三区高清 | 亚洲一区二区三区四区五区中文 | 日韩精品专区在线影院重磅 | 精品亚洲一区二区三区 | 国产日韩中文字幕 | 国产精品久久久久久久久免费 | 99福利视频| 成人高清在线 | 亚洲毛片网站 | 欧美视频精品在线观看 | 亚洲视频精品 | 九九精品在线 | 成人av网站在线观看 | 亚洲成人福利在线观看 |