解:(1)設A(x
1,y
1),B(x
2,y
2),則

.
∵

,

,
∴兩式相減得

,即

=0,即

,得

,
所以橢圓C的方程為2x
2+y
2=1.
(2)設P(x
3,y
3),Q(x
4,y
4),l
2:y=kx+m(∵l
2與y軸相交,∴l
2的斜率存在).
由

,得

,得

,
即

,將①代入②得(λ-3)m=0,
∵m≠0,∴λ=3.
(3)將y=kx+m代入2x
2+y
2=1,得(k
2+2)x
2+2kmx+(m
2-1)=0.
∵λ=3,
∴由

消去x
3、x
4得,

.
由△>0得k
2>2(m
2-1),即

2(m
2-1),即

,即

,解得

,或

.
所以m的取值范圍為

,或

.
分析:(1)平方差法:設A(x
1,y
1),B(x
2,y
2),代入橢圓方程作差,據中點坐標公式、直線斜率公式即可求得a
2值;
(2)設P(x
3,y
3),Q(x
4,y
4),l
2:y=kx+m,由

,用橫坐標表示出來即可求得λ值;
(3)將直線l
2的方程與橢圓方程聯立消y,由(2)的結論及韋達定理可得k,m的關系式,再由△>0消掉k即可求得m的取值范圍;
點評:本題考查直線與圓錐曲線的綜合問題,考查學生綜合運用所學知識分析問題解決問題的能力,弦長公式、韋達定理、判別式是解決該類問題的基礎知識,應熟練掌握,涉及弦中點問題?紤]“平方差法”.