【題目】已知:x、y、z是正實數,且x+2y+3z=1,
(1)求 的最小值;
(2)求證:x2+y2+z2≥ .
【答案】
(1)解:∵x、y、x是正實數,且x+2y+3z=1,
∴ =(
)(x+2y+3z)
=6+ +
+
+
+
+
=6+( +
)+(
+
)+(
+
)
≥6+2 +2
+2
當且僅當 =
且
=
且
=
時取等號;
(2)解:由柯西不等式可得1=(x+2y+3z)2
≤(x2+y2+z2)(12+22+32)=14(x2+y2+z2),
∴x2+y2+z2≥ ,當且僅當x=2y=3z即x=
,y=
,z=
時取等號.
故x2+y2+z2≥ .
【解析】(1)由題意整體代入可得 =6+(
+
)+(
+
)+(
+
),由基本不等式可得;(2)由柯西不等式可得1=(x+2y+3z)2≤(x2+y2+z2)(12+22+32)=14(x2+y2+z2),由不等式的性質可得.
【考點精析】解答此題的關鍵在于理解基本不等式的相關知識,掌握基本不等式:,(當且僅當
時取到等號);變形公式:
.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)滿足:對任意x,y∈R,都有f(x+y)=f(x)f(y)﹣f(x)﹣f(y)+2成立,且x>0時,f(x)>2,
(1)求f(0)的值,并證明:當x<0時,1<f(x)<2.
(2)判斷f(x)的單調性并加以證明.
(3)若函數g(x)=|f(x)﹣k|在(﹣∞,0)上遞減,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 ,其中a為實數.
(1)當 時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)當x≥ 時,若關于x的不等式f(x)≥0恒成立,試求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義在[0,+∞)上的函數f(x)滿足f(x)=2f(x+2),當x∈[0,2)時,f(x)=﹣2x2+4x.設f(x)在[2n﹣2,2n)上的最大值為an(n∈N*),且{an}的前n項和為Sn , 則Sn=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】 ①求平行于直線3x+4y-12=0,且與它的距離是7的直線的方程;
②求垂直于直線x+3y-5="0," 且與點P(-1,0)的距離是的直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學從高三男生中隨機抽取名學生的身高,將數據整理,得到的頻率分布表如下所示,
組號 | 分組 | 頻數 | 頻率 |
第1組 | 5 | 0.050 | |
第2組 | 0.350 | ||
第3組 | 30 | ||
第4組 | 20 | 0.200 | |
第5組 | 10 | 0.100 | |
合計 | 1.00 |
(Ⅰ)求出頻率分布表中①和②位置上相應的數據,并完成下列頻率分布直方圖;
(Ⅱ)為了能對學生的體能做進一步了解,該校決定在第3,4,5組中用分層抽樣抽取6名學生進行不同項目的體能測試,若在這6名學生中隨機抽取2名學生進行引體向上測試,則第4組中至少有一名學生被抽中的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知以M為圓心的圓M: 及其上一點A(2,4)
(1)設圓N與x軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標準方程;
(2)設平行于OA的直線l與圓M相交于B、C兩點,且BC=OA,求直線l的方程;
(3)設點T(t,o)滿足:存在圓M上的兩點P和Q,使得,求實數t的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線M: =1(a>0,b>0)的上焦點為F,上頂點為A,B為虛軸的端點,離心率e=
,且S△ABF=1﹣
.拋物線N的頂點在坐標原點,焦點為F.
(1)求雙曲線M和拋物線N的方程;
(2)設動直線l與拋物線N相切于點P,與拋物線的準線相交于點Q,則以PQ為直徑的圓是否恒過y軸上的一個定點?如果經過,試求出該點的坐標,如果不經過,試說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數y= x2的圖象在點(x0 ,
x02)處的切線為l,若l也為函數y=lnx(0<x<1)的圖象的切線,則x0必須滿足( )
A. <x0<1
B.1<x0<
C. <x0<
D. <x0<2
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com