【題目】已知函數.
(1)若 ,且存在區間
,使
和
在區間
上具有相同的單調性,求
的取值范圍;
(2)若 對任意
恒成立,求
的取值范圍.
科目:高中數學 來源: 題型:
【題目】設拋物線的頂點在坐標原點,焦點在
軸上,過點
的直線交拋物線于
兩點,線段
的長度為8,
的中點到
軸的距離為3.
(1)求拋物線的標準方程;
(2)設直線在
軸上的截距為6,且拋物線交于
兩點,連結
并延長交拋物線的準線于點
,當直線
恰與拋物線相切時,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學高二年級開設五門大學先修課程,其中屬于數學學科的有兩門,分別是線性代數和微積分,其余三門分別為大學物理,商務英語以及文學寫作,年級要求每名學生只能選修其中一科,該校高二年級600名學生各科選課人數統計如下表:
其中選修數學學科的人數所占頻率為0.6,為了了解學生成績與選課情況之間的關系,用分層抽樣的方法從這600名學生中抽取10人進行分析.
(1)從選出的10名學生中隨機抽取3人,求這3人中至少2人選修線性代數的概率;
(2)從選出的10名學生中隨機抽取3人,記為選擇線性代數人數與選擇微積分人數差的絕對值,求隨機變量
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了調查喜歡旅游是否與性別有關,調查人員就“是否喜歡旅游”這個問題,在火車站分別隨機調研了名女性或
名男性,根據調研結果得到如圖所示的等高條形圖.
(1)完成下列 列聯表:
喜歡旅游 | 不喜歡旅游 | 估計 | |
女性 | |||
男性 | |||
合計 |
(2)能否在犯錯誤概率不超過的前提下認為“喜歡旅游與性別有關”.
附:
參考公式:
,其中
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了調查喜歡旅游是否與性別有關,調查人員就“是否喜歡旅游”這個問題,在火車站分別隨機調研了名女性或
名男性,根據調研結果得到如圖所示的等高條形圖.
(1)完成下列 列聯表:
喜歡旅游 | 不喜歡旅游 | 估計 | |
女性 | |||
男性 | |||
合計 |
(2)能否在犯錯誤概率不超過的前提下認為“喜歡旅游與性別有關”.
附:
參考公式:
,其中
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】公元263年左右,我國數學家劉徽發現當圓內接正多邊形的邊數無限增加時,多邊形的面積可無限接近圓的面積,并創立了“割圓術”,利用“割圓術”,劉徽得到了圓周率精確到小數點后兩位的近似值3.14,這就是著名的“徽率”,利用劉徽的“割圓術”思想設計的一個程序框圖,則輸出的值為( )
(參考數據: )
A. 12 B. 24 C. 48 D. 96
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2017年“一帶一路”國際合作高峰論壇于今年5月14日至15日在北京舉行.為高標準完成高峰論壇會議期間的志愿服務工作,將從27所北京高校招募大學生志愿者,某調查機構從是否有意愿做志愿者在某高校訪問了80人,經過統計,得到如下丟失數據的列聯表:(,表示丟失的數據)
無意愿 | 有意愿 | 總計 | |
男 | 40 | ||
女 | 5 | ||
總計 | 25 | 80 |
(1)求出的值,并判斷:能否有99.9%的把握認為有意愿做志愿者與性別有關;
(2)若表中無意愿做志愿者的5個女同學中,3個是大學三年級同學,2個是大學四年級同學.現從這5個同學中隨機選2同學進行進一步調查,求這2個同學是同年級的概率.
附參考公式及數據: ,其中
.
0.40 | 0.25 | 0.10 | 0.010 | 0.005 | 0.001 | |
0.708 | 1.323 | 2.706 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某港口有一個泊位,現統計了某月100艘輪船在該泊位?康臅r間(單位:小時),如果停靠時間不足半小時按半小時計時,超過半小時不足1小時按1小時計時,以此類推,統計結果如表:
停靠時間 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 | 5.5 | 6 |
輪船數量 | 12 | 12 | 17 | 20 | 15 | 13 | 8 | 3 |
(Ⅰ)設該月100艘輪船在該泊位的平均?繒r間為小時,求
的值;
(Ⅱ)假定某天只有甲、乙兩艘輪船需要在該泊位?小時,且在一晝夜的時間段中隨機到達,求這兩艘輪船中至少有一艘在停靠該泊位時必須等待的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com