【題目】如圖,為圓錐的頂點,
是圓錐底面的圓心,
為底面直徑,
.
是底面的內接正三角形,
為
上一點,
.
(1)證明:平面
;
(2)求二面角的余弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)要證明平面
,只需證明
,
即可;
(2)以O為坐標原點,OA為x軸,ON為y軸建立如圖所示的空間直角坐標系,分別算出平面的法向量為
,平面
的法向量為
,利用公式
計算即可得到答案.
(1)由題設,知為等邊三角形,設
,
則,
,所以
,
又為等邊三角形,則
,所以
,
,則
,所以
,
同理,又
,所以
平面
;
(2)過O作∥BC交AB于點N,因為
平面
,以O為坐標原點,OA為x軸,ON為y軸建立如圖所示的空間直角坐標系,
則,
,
,
,
設平面的一個法向量為
,
由,得
,令
,得
,
所以,
設平面的一個法向量為
由,得
,令
,得
,
所以
故,
設二面角的大小為
,則
.
【點晴】
本題主要考查線面垂直的證明以及利用向量求二面角的大小,考查學生空間想象能力,數學運算能力,是一道容易題.
科目:高中數學 來源: 題型:
【題目】自由購是一種通過自助結算購物的形式.某大型超市為調查顧客自由購的使用情況,隨機抽取了100人,調查結果整理如下:
20以下 | [20,30) | [30,40) | [40,50) | [50,60) | [60,70] | 70以上 | |
使用人數 | 3 | 12 | 17 | 6 | 4 | 2 | 0 |
未使用人數 | 0 | 0 | 3 | 14 | 36 | 3 | 0 |
(1)現隨機抽取1名顧客,試估計該顧客年齡在[30,50)且未使用自由購的概率;
(2)從被抽取的年齡在[50,70]使用的自由購顧客中,隨機抽取2人進一步了解情況,求這2人年齡都在[50,60)的概率;
(3)為鼓勵顧客使用自由購,該超市擬對使用自由購顧客贈送1個環保購物袋.若某日該超市預計有5000人購物,試估計該超市當天至少應準備多少個環保購物袋?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在中,
,
,
,
分別為
,
的中點
是由
繞直線
旋轉得到,連結
,
,
.
(1)證明:平面
;
(2)若,棱
上是否存在一點
,使得
?若存在,確定點
的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】中國古代教育要求學生掌握“六藝”,即“禮、樂、射、御、書、數”.某校為弘揚中國傳統文化,舉行有關“六藝”的知識競賽.甲、乙、丙三位同學進行了決賽.決賽規則:決賽共分場,每場比賽的第一名、第二名、第三名的得分分別為
,選手最后得分為各場得分之和,決賽結果是甲最后得分為
分,乙和丙最后得分都為
分,且乙在其中一場比賽中獲得第一名,現有下列說法:
①每場比賽第一名得分分;
②甲可能有一場比賽獲得第二名;
③乙有四場比賽獲得第三名;
④丙可能有一場比賽獲得第一名.
則以上說法中正確的序號是______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設有下列四個命題:
p1:兩兩相交且不過同一點的三條直線必在同一平面內.
p2:過空間中任意三點有且僅有一個平面.
p3:若空間兩條直線不相交,則這兩條直線平行.
p4:若直線l平面α,直線m⊥平面α,則m⊥l.
則下述命題中所有真命題的序號是__________.
①②
③
④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某沙漠地區經過治理,生態系統得到很大改善,野生動物數量有所增加.為調查該地區某種野生動物的數量,將其分成面積相近的200個地塊,從這些地塊中用簡單隨機抽樣的方法抽取20個作為樣區,調查得到樣本數據(xi,yi)(i=1,2,…,20),其中xi和yi分別表示第i個樣區的植物覆蓋面積(單位:公頃)和這種野生動物的數量,并計算得,
,
,
,
.
(1)求該地區這種野生動物數量的估計值(這種野生動物數量的估計值等于樣區這種野生動物數量的平均數乘以地塊數);
(2)求樣本(xi,yi)(i=1,2,…,20)的相關系數(精確到0.01);
(3)根據現有統計資料,各地塊間植物覆蓋面積差異很大.為提高樣本的代表性以獲得該地區這種野生動物數量更準確的估計,請給出一種你認為更合理的抽樣方法,并說明理由.
附:相關系數r=,
≈1.414.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2019年4月,河北、遼寧、江蘇、福建、湖北、湖南、廣東、重慶等8省市發布高考綜合改革實施方案,決定從2018年秋季入學的高中一年級學生開始實施“”高考模式.所謂“
”,即“3”是指考生必選語文、數學、外語這三科;“1”是指考生在物理、歷史兩科中任選一科;“2”是指考生在生物、化學、思想政治、地理四科中任選兩科.
(1)若某考生按照“”模式隨機選科,求選出的六科中含有“語文,數學,外語,物理,化學”的概率.
(2)新冠疫情期間,為積極應對“”新高考改革,某地高一年級積極開展線上教學活動.教育部門為了解線上教學效果,從當地不同層次的學校中抽取高一學生2500名參加語數外的網絡測試,并給前400名頒發榮譽證書,假設該次網絡測試成績服從正態分布,且滿分為450分.
①考生甲得知他的成績為270分,考試后不久了解到如下情況:“此次測試平均成績為171分,351分以上共有57人”,請用你所學的統計知識估計甲能否獲得榮譽證書,并說明理由;
②考生丙得知他的實際成績為430分,而考生乙告訴考生丙:“這次測試平均成績為201分,351分以上共有57人”,請結合統計學知識幫助丙同學辨別乙同學信息的真偽,并說明理由.
附:;
;
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com