【題目】已知定義在實數集上的偶函數
和奇函數
滿足
.
(1)求與
的解析式;
(2)若定義在實數集上的以2為最小正周期的周期函數
,當
時,
,試求
在閉區間
上的表達式,并證明
在閉區間
上單調遞減;
(3)設(其中
為常數),若
對于
恒成立,求
的取值范圍.
【答案】(1),
(2)
;證明見解析(3)
【解析】
(1)根據奇函數與偶函數定義,可分別代入得關于與
的方程組,解方程組即可求得
與
的解析式;
(2)由為以2為最小正周期的周期函數,所以當
時
,即可根據
求得求
在閉區間
上的表達式.根據函數單調性的定義,任取
,即可通過作差法證明函數的單調性.
(3)利用換元法,令,由
可求得
的取值范圍.則
.由
可知當
時滿足
,因而可知
恒成立.分離參數
可知
,結合基本不等式即可求得
的取值范圍.
(1)由①,
因為是偶函數,
是奇函數
所以有,即
②
∵,
定義在實數集
上
由①和②解得,
(2)是
上以2為正周期的周期函數
所以當時,
即在閉區間
上的表達式為
下面證明在閉區間
上遞減:
,當且僅當
即時等號成立.對于任意
因為,所以
,
,
,
,
從而,所以當
時,
遞減
(3)∵在
單調遞增
∴
∴對于
恒成立
∴對于
恒成立
令,則
當且僅當時,等號成立,且
所以在區間上
單調遞減
∴
∴為
的取值范圍
科目:高中數學 來源: 題型:
【題目】已知橢圓的中心在坐標原點,且經過點
,它的一個焦點與拋物線E:
的焦點重合,斜率為k的直線l交拋物線E于A、B兩點,交橢圓
于C、D兩點.
(1)求橢圓的方程;
(2)直線l經過點,設點
,且
的面積為
,求k的值;
(3)若直線l過點,設直線
,
的斜率分別為
,
,且
,
,
成等差數列,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知無窮數列,
,
滿足:對任意的
,都有
=
,
=
,
=
.記
=
(
表示
個實數
,
,
中的最大值).
(1)若=
,
=
,
=
,求
,
,
的值;
(2)若=
,
=
,求滿足
=
的
的所有值;
(3)設,
,
是非零整數,且
,
,
互不相等,證明:存在正整數
,使得數列
,
,
中有且只有一個數列自第
項起各項均為
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義在實數集上的偶函數
和奇函數
滿足
.
(1)求與
的解析式;
(2)若定義在實數集上的以2為最小正周期的周期函數
,當
時,
,試求
在閉區間
上的表達式,并證明
在閉區間
上單調遞減;
(3)設(其中
為常數),若
對于
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設和
是雙曲線
上的兩點,線段
的中點為
,直線
不經過坐標原點
.
(1)若直線和直線
的斜率都存在且分別為
和
,求證:
;
(2)若雙曲線的焦點分別為、
,點
的坐標為
,直線
的斜率為
,求由四點
、
、
、
所圍成四邊形
的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分13分)如圖,在直角坐標系中,角
的頂點是原點,始邊與
軸正半軸重合.終邊交單位圓于點
,且
,將角
的終邊按逆時針方向旋轉
,交單位圓于點
,記
.
(1)若,求
;
(2)分別過作
軸的垂線,垂足依次為
,記
的面積為
,
的面積為
,若
,求角
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為響應國家號召,打贏脫貧致富攻堅戰,武漢大學團隊帶領湖北省大悟縣新城鎮熊灣村村民建立有機、健康、高端、綠色的蔬菜基地,并策劃“生產、運輸、銷售”一體化的直銷供應模式,據統計,當地村民兩年時間成功脫貧.蔬菜種植基地將采摘的有機蔬菜以每份三斤稱重并保鮮分裝,以每份10元的價格銷售到生鮮超市,每份15元的價格賣給顧客,如果當天前8小時賣不完,則超市通過促銷以每份5元的價格賣給顧客(根據經驗,當天能夠把剩余的有機蔬菜都低價處理完畢,且處理完畢后,當天不再進貨).該生鮮超市統計了100天有機蔬菜在每天的前8小時內的銷售量(單位:份),制成如下表格(注:,且
).若以100天記錄的頻率作為每日前8小時銷售量發生的概率,該生鮮超市當天銷售有機蔬菜利潤的期望值為決策依據,若購進17份比購進18份的利潤的期望值大,則x的最小值是________.
前8小時內銷售量 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
頻數 | 10 | x | 16 | 16 | 15 | 13 | y |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com