【題目】已知曲線的極坐標方程是
,以極點為平面直角坐標系的原點,極軸為
軸的正半軸,建立平面直角坐標系,直線
的參數方程是
(
為參數).
(1)將曲線的極坐標方程化為直角坐標方程;
(2)若直線與曲線
相交于
兩點,且
,求直線
的傾斜角
的值.
科目:高中數學 來源: 題型:
【題目】已知橢圓C1以直線所過的定點為一個焦點,且短軸長為4.
(Ⅰ)求橢圓C1的標準方程;
(Ⅱ)已知橢圓C2的中心在原點,焦點在y軸上,且長軸和短軸的長分別是橢圓C1的長軸和短軸的長的倍(>1),過點C(1,0)的直線l與橢圓C2交于A,B兩個不同的點,若,求△OAB的面積取得最大值時直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線的極坐標方程是
,以極點為平面直角坐標系的原點,極軸為
軸的正半軸,建立平面直角坐標系,直線
的參數方程是
(
為參數).
(1)將曲線的極坐標方程化為直角坐標方程;
(2)若直線與曲線
相交于
兩點,且
,求直線
的傾斜角
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知曲線
,以平面直角坐標系
的原點
為極點,
軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線
.
(1)將曲線上的所有點的橫坐標、縱坐標分別伸長為原來的
倍、2倍后得到曲線
.試寫出直線
的直角坐標方程和曲線
的參數方程;
(2)在曲線上求一點
,使點
到直線
的距離最大,并求出此最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,梯形中,
,
,
,
,
為
中點.將
沿
翻折到
的位置,使
,如圖2.
(Ⅰ)求證:平面與平面
;
(Ⅱ)求直線與平面
所成角的正弦值;
(Ⅲ)設分別為
和
的中點,試比較三棱錐
和三棱錐
(圖中未畫出)的體積大小,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某課外實習作業小組調查了1000名職場人士,就入職兩家公司的意愿做了統計,得到如下數據分布:
(1)請分別計算40歲以上(含40歲)與40歲以下全體中選擇甲公司的頻率(保留兩位小數),根據計算結果,你能初步得出什么結論?
(2)若分析選擇意愿與年齡這兩個分類變量,計算得到的的觀測值為
,測得出“選擇意愿與年齡有關系”的結論犯錯誤的概率的上限是多少?并用統計學知識分析,選擇意愿與年齡變量和性別變量哪一個關聯性更大?
附:
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com