日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
設△ABC是邊長為2的等邊三角形,P是△ABC內任意一點,P到三邊的距離分別為d1,d2,d3,根據三角形PAB、PBC、PCA的面積之和等于△ABC的面積,可得d1,d2,d3為定值
3
,由此類比:P是棱長為3的正四面體ABCD內任意一點,且P到各面的距離分別為h1,h2,h3,h4,則h1+h2+h3+h4的值為(  )
分析:通過類比,點到直線的距離類比為點到平面的距離,面積類比為體積即可.判斷求解h1+h2+h3+h4的定值.
解答:解:棱長為a的正四面體ABCD的高為
6
3
a
故棱長為3的正四面體ABCD的高為
6

根據等積法,正四面體ABCD體積等于三棱錐P-ABC,P-ABD,P-ACD和P-BCD的體積和
而這些棱錐的底面積均是相等的
故意h1+h2+h3+h4=
6

故選B
點評:本題考查類比推理,升維類比是一種比較重要的類比方式,要掌握好其類比規(guī)則,對于類比還有一點要注意,那就是類比的結論不一定是正確的.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網已知△ABC是邊長為2的正三角形,P,Q依次是AB,AC邊上的點,且線段PQ將△ABC分成面積相等的兩部分,設AP=x,AQ=t,PQ=y.
(1)求t關于x的函數關系式;
(2)求y的最值,并寫出取得最值得條件.

查看答案和解析>>

科目:高中數學 來源:2010年海南省高二下學期期末測試數學文 題型:解答題

(12分)已知△ABC是邊長為2的正三角形,如圖,P,Q依次是AB,AC邊上的點,且線段PQ將△ABC分成面積相等的兩部分,設AP=x,AQ=t,PQ=y,求:

(1)t關于x的函數關系式;

(2)y關于x的函數關系式;

(3)y的最小值和最大值。

 

 

 

 

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設△ABC是邊長為2的等邊三角形,P是△ABC內任意一點,P到三邊的距離分別為d1,d2,d3,根據三角形PAB、PBC、PCA的面積之和等于△ABC的面積,可得d1,d2,d3為定值
3
,由此類比:P是棱長為3的正四面體ABCD內任意一點,且P到各面的距離分別為h1,h2,h3,h4,則h1+h2+h3+h4的值為(  )
A.
6
3
B.
6
C.
2
6
3
D.
3

查看答案和解析>>

科目:高中數學 來源:2008-2009學年浙江省臺州市高二(下)期末數學試卷(理科)(解析版) 題型:選擇題

設△ABC是邊長為2的等邊三角形,P是△ABC內任意一點,P到三邊的距離分別為d1,d2,d3,根據三角形PAB、PBC、PCA的面積之和等于△ABC的面積,可得d1,d2,d3為定值,由此類比:P是棱長為3的正四面體ABCD內任意一點,且P到各面的距離分別為h1,h2,h3,h4,則h1+h2+h3+h4的值為( )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 最新中文字幕在线观看 | 色十八| 国产精品成av人在线视午夜片 | 中文字幕日韩高清 | 日本五月婷婷 | 精品一区二区三区四区五区 | 国产精品久久久久久久久免费丝袜 | 不卡在线视频 | 青青草免费在线 | 欧美日韩一区二区三区在线观看 | 日韩二区精品 | 国产精品乱码一区二区三区 | 综合伊人| 国产aⅴ一区二区 | 欧美日韩福利 | 国产精品视频免费 | 99精品国产在热久久 | 特级黄色毛片 | 成人精品在线视频 | 在线播放亚洲 | 成人水多啪啪片 | 日韩精品一区二区三区在线播放 | 亚洲福利电影网 | 一区二区三区四区精品 | 亚洲一区| 91免费观看视频 | 韩国毛片在线 | 欧美日韩在线播放 | 狠狠色综合网站久久久久久久 | 欧美怡红院视频一区二区三区 | 天天草夜夜 | 在线有码| 99re视频| 亚日韩一区| 久久国内精品 | 黄页免费看 | 四虎av | 美女中文字幕视频 | 色呦呦在线| 久久久久久久久久久久国产精品 | 日本亚洲欧美 |