【題目】已知橢圓E: (a>b>0)的離心率
,且點
在橢圓E上.
(Ⅰ)求橢圓E的方程;
(Ⅱ)直線l與橢圓E交于A、B兩點,且線段AB的垂直平分線經過點 .求△AOB(O為坐標原點)面積的最大值.
【答案】解:(Ⅰ)由已知,e= =
,a2﹣b2=c2 , ∵點
在橢圓上,
∴ ,解得a=2,b=1.
∴橢圓方程為 ;
(Ⅱ)設A(x1 , y1),B(x2 , y2),
∵AB的垂直平分線過點 ,∴AB的斜率k存在.
當直線AB的斜率k=0時,x1=﹣x2 , y1=y2 ,
∴S△AOB= 2|x||y|=|x|
= ≤
=1,
當且僅當x12=4﹣x12 , 取得等號,
∴ 時,(S△AOB)max=1;
當直線AB的斜率k≠0時,設l:y=kx+m(m≠0). 消去y得:(1+4k2)x2+8kmx+4m2﹣4=0,
由△>0可得4k2+1>m2①,
x1+x2=﹣ ,x1x2=
,可得
,
,
∴AB的中點為 ,
由直線的垂直關系有 ,化簡得1+4k2=﹣6m②
由①②得﹣6m>m2 , 解得﹣6<m<0,
又O(0,0)到直線y=kx+m的距離為 ,
,
= ,
∵﹣6<m<0,∴m=﹣3時, .
由m=﹣3,∴1+4k2=18,解得 ;
即 時,(S△AOB)max=1;
綜上:(S△AOB)max=1.
【解析】(Ⅰ)運用離心率公式和點滿足橢圓方程,解方程可得a,b,進而得到橢圓方程;(Ⅱ)設A(x1 , y1),B(x2 , y2),討論直線AB的斜率為0和不為0,聯立直線方程和橢圓方程,運用韋達定理和弦長公式,結合基本不等式和二次函數的最值的求法,可得面積的最大值.
科目:高中數學 來源: 題型:
【題目】已知直線l與拋物線交于點A,B兩點,與x軸交于點M,直線OA,OB的斜率之積為
.
(1)證明:直線AB過定點;
(2)以AB為直徑的圓P交x軸于E,F兩點,O為坐標原點,求|OE||OF|的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線l過點A(0,4),且在兩坐標軸上的截距之和為1.
(Ⅰ)求直線l的方程;
(Ⅱ)若直線l1與直線l平行,且l1與l間的距離為2,求直線l1的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,建立平面直角坐標系,x軸在地平面上,y軸垂直于地平面,單位長度為1 km,某炮位于原點.已知炮彈發射后的軌跡在方程y=kx- (1+k2)x2(k>0)表示的曲線上,其中k與發射方向有關.炮的射程是指炮彈落地點的橫坐標.則炮的最大射程為( )
A. 20 km B. 10 km
C. 5 km D. 15 km
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】理科競賽小組有9名女生、12名男生,從中隨機抽取一個容量為7的樣本進行分析.
(Ⅰ)如果按照性別比例分層抽樣,可以得到多少個不同的樣本?(寫出算式即可)
(Ⅱ)如果隨機抽取的7名同學的物理、化學成績(單位:分)對應如表:
學生序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
物理成績 | 65 | 70 | 75 | 81 | 85 | 87 | 93 |
化學成績 | 72 | 68 | 80 | 85 | 90 | 86 | 91 |
規定85分以上(包括85份)為優秀,從這7名同學中再抽取3名同學,記這3名同學中物理和化學成績均為優秀的人數為X,求隨機變量X的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在數列中,已知
,對于任意的
,有
.
(1)求數列的通項公式.
(2)若數列滿足
,求數列
的通項公式.
(3)設,是否存在實數
,當
時,
恒成立?若存在,求實數
的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知是橢圓
與拋物線
的一個公共點,且橢圓與拋物線具有一個相同的焦點
.
(1)求橢圓及拋物線
的方程;
(2)設過且互相垂直的兩動直線
,
與橢圓
交于
兩點,
與拋物線
交于
兩點,求四邊形
面積的最小值
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com