日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

【題目】已知集合M={(x,y)|y=f(x)},若對于任意實數對(x1 , y1)∈M,存在(x2 , y2)∈M,使x1x2+y1y2=0成立,則稱集合M是“垂直對點集”,給出下列四個集合: ①M={(x,y)|y= };
②M={(x,y)|y=sinx+1};
③={(x,y)|y=2x﹣2};
④M={(x,y)|y=log2x}
其中是“垂直對點集”的序號是(
A.②③④
B.①②④
C.①③④
D.①②③

【答案】D
【解析】解:由題意,若集合M={(x,y)|y=f(x)}滿足: 對于任意A(x1 , y1)∈M,存在B(x2 , y2)∈M,使得x1x2+y1y2=0成立,
因此 .所以,若M是“垂直對點集”,
那么在M圖象上任取一點A,過原點與直線OA垂直的直線OB總與函數圖象相交于點B.
對于①:M={(x,y)|y= },其圖象是過一、二象限,且關于y軸對稱,
所以對于圖象上的點A,在圖象上存在點B,使得OB⊥OA,所以①符合題意;
對于②:M={(x,y)|y=sinx+1},畫出函數圖象,
在圖象上任取一點A,連OA,過原點作直線OA的垂線OB,
因為y=sinx+1的圖象沿x軸向左向右無限延展,且與x軸相切,
因此直線OB總會與y=sinx+1的圖象相交.
所以M={(x,y)|y=sinx+1}是“垂直對點集”,故②符合題意;
對于③:M={(x,y)|y=2x﹣2},其圖象過點(0,﹣1),
且向右向上無限延展,向左向下無限延展,
所以,據圖可知,在圖象上任取一點A,連OA,
過原點作OA的垂線OB必與y=2x﹣2的圖象相交,即一定存在點B,使得OB⊥OA成立,
故M={(x,y)|y=2x﹣2}是“垂直對點集”.故③符合題意;
對于④:M={x,y)|y=log2x},對于函數y=log2x,
過原點做出其圖象的切線OT(切點T在第一象限),
則過切點T做OT的垂線,則垂線必不過原點,
所以對切點T,不存在點M,使得OM⊥OT,
所以M={(x,y)|y=log2x}不是“垂直對點集”;故④不符合題意.
故選:D.
【考點精析】通過靈活運用集合的表示方法-特定字母法,掌握①自然語言法:用文字敘述的形式來描述集合.②列舉法:把集合中的元素一一列舉出來,寫在大括號內表示集合.③描述法:{|具有的性質},其中為集合的代表元素.④圖示法:用數軸或韋恩圖來表示集合即可以解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】若函數處取得極大值或極小值,則稱為函數的極值點.

設函數

(1)若有兩個極值點且滿足,的值及的取值范圍;

(2)若處的切線與的圖象有且只有一個公共點,求的值;

(3),且對滿足“函數的圖象總有三個交點”的任意實數,都有成立,求滿足的條件

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列說法錯誤的是( )

A. 命題x24x30,則x3”的逆否命題是:x≠3,則x24x3≠0”

B. “x>1”“|x|>0”的充分不必要條件

C. pq為假命題,則p、q均為假命題

D. 命題p“x0∈R使得x01<0”,則p“x∈R,均有x2x1≥0”

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列結論錯誤的是 ( )

A. 若“”與“”均為假命題,則假.

B. 命題“存在”的否定是“對任意

C. ”是“”的充分不必要條件.

D. “若則a<b”的逆命題為真.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對于定義域為D的函數y=f(x),如果存在區間[m,n]D,其中m<n,同時滿足:①f(x)在[m,n]內是單調函數;②當定義域是[m,n]時,f(x)的值域也是[m,n]. 則稱函數f(x)是區間[m,n]上的“保值函數”,區間[m,n]稱為“保值區間”.
(1)求證:函數g(x)=x2﹣2x不是定義域[0,1]上的“保值函數”.
(2)若函數f(x)=2+ (a∈R,a≠0)是區間[m,n]上的“保值函數”,求a的取值范圍.
(3)對(2)中函數f(x),若不等式|a2f(x)|≤2x對x≥1恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的一個頂點為,焦點在軸上,離心率為

(1)求橢圓的方程;

(2)若橢圓與直線相交于不同的兩點,當時,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數
(1)若不等式f(x)﹣f(x+m)≤1恒成立,求實數m的最大值;
(2)當a< 時,函數g(x)=f(x)+|2x﹣1|有零點,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設x,y,z均為正實數,且xyz=1,求證: + + ≥xy+yz+zx.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,修建一條公路需要一段環湖彎曲路段與兩條直道平滑連接(相切).已知環湖彎曲路段為某三次函數圖像的一部分,則該函數的解析式為( )

A. B.

C. D.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 亚洲av毛片成人精品 | 伊人2222| 日韩国产欧美 | 色网站在线观看 | 久久久久久久久久久国产 | 国语对白永久免费 | 日日夜夜精品 | 黑人巨大猛烈捣出白浆 | 一级毛片黄色 | 熟女毛片| av黄色大片| 久久久久国产一区二区三区 | 成年人免费视频网站 | 天天操天天干天天操 | 日韩免费一区二区三区 | 久久久久久一区 | av网站免费看 | 精品一区在线播放 | 一级做a爱片性色毛片 | 国产女人18毛片18精品 | 成人做受黄大片 | 99热99re6国产在线播放 | 国产又粗又黄又爽又硬的视频 | 四虎在线观看视频 | a级毛毛片 | 午夜av在线播放 | 伊人黄色| 欧美日韩国产二区 | 一级黄色在线观看 | 三级福利视频 | www.黄色网 | 欧美日本一区 | 国产一区二区三区在线视频 | 日日不卡av | 在线观看网址你懂的 | 亚洲一区在线播放 | 伊人久久中文字幕 | 夜夜嗨av一区二区三区网页 | 快播少女爱欢乐 | 亚洲激情在线视频 | 日本在线一区二区三区 |