如圖,平面ABCD⊥平面ADEF,其中ABCD為矩形,ADEF為梯形,AF∥DE,AF⊥FE,AF=AD=2DE=2.
(Ⅰ)求異面直線EF與BC所成角的大;
(Ⅱ)若二面角A-BF-D的平面角的余弦值為,求AB的長.
(Ⅰ)30°;(Ⅱ).
【解析】
試題分析:(Ⅰ)異面直線EF與BC所成角的大小,即AD與EF所成角的大小,則在面ADEF內求AD與EF所成角的大小即可;(Ⅱ)法一:根據條件,取AF的中點G,先證明DG垂直平面ABF,然后過G向交線BF作垂線,找出二面角的平面角,根據平面角的余弦值大小,列關系式求AB的長;法二:以F為原點,AF、FQ所在直線為x軸,y軸建立空間直角坐標系,列出各點坐標,分別找出面ABF和面BDF的法向量,再根據向量的數量積公式以及平面角的余弦值求AB的長.
試題解析:(Ⅰ) 延長AD,FE交于Q.
因為ABCD是矩形,所以BC∥AD,
所以∠AQF是異面直線EF與BC所成的角.
在梯形ADEF中,因為DE∥AF,AF⊥FE,AF=2,DE=1
得AQF=30°. 7分
(Ⅱ)方法一:
設AB=x.取AF的中點G.由題意得DG⊥AF.
因為平面ABCD⊥平面ADEF,AB⊥AD,所以AB⊥平面ADEF,
所以AB⊥DG.
所以DG⊥平面ABF.
過G作GH⊥BF,垂足為H,連結DH,則DH⊥BF,
所以∠DHG為二面角A-BF-D的平面角.
在直角△AGD中,AD=2,AG=1,得DG=.
在直角△BAF中,由=sin∠AFB=
,得
=
,
所以GH=.
在直角△DGH中,DG=,GH=
,得DH=
.
因為cos∠DHG==
,得x=
,
所以AB=. 15分
方法二:設AB=x.
以F為原點,AF,FQ所在的直線分別為x軸,y軸建立空間直角坐標系Fxyz.則
F(0,0,0),A(-2,0,0),E(,0,0),D(-1,
,0),B(-2,0,x),
所以=(1,-
,0),
=(2,0,-x).
因為EF⊥平面ABF,所以平面ABF的法向量可取=(0,1,0).
設=(x1,y1,z1)為平面BFD的法向量,則
所以,可取=(
,1,
).
因為cos<,
>=
=
,得x=
,
所以AB=. 15分
考點:1、異面直線所成的角;2、二面角.
科目:高中數學 來源: 題型:
1 | 2 |
查看答案和解析>>
科目:高中數學 來源: 題型:
1 | 2 |
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
1 |
2 |
查看答案和解析>>
科目:高中數學 來源: 題型:
| ||
2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com