分析 利用分段函數的解析式,通過函數的值域,列出關系式,然后轉化求解實數a的取值.
解答 解:函數f(x)=$\left\{\begin{array}{l}{-x+3,-1≤x≤1}\\{1+lo{g}_{({a}^{2}-1)}(2x),2≤x≤8}\end{array}\right.$的值域是[2,5],
可得:2≤1+$lo{g}_{{a}^{2}-1}(2x)$≤5,
即:-1≤$lo{g}_{{a}^{2}-1}(2x)$≤4,2x∈[4,16]
當a2-1≥1即a$≥\sqrt{2}$或a$≤-\sqrt{2}$時,可得$lo{g}_{{a}^{2}-1}4=1$,$lo{g}_{{a}^{2}-1}16=4$,解得a=$±\sqrt{3}$,
當a2-1<1即a∈($-\sqrt{2}$,$\sqrt{2}$)時$lo{g}_{{a}^{2}-1}4=4$,解得a2-1=$\sqrt{2}$,可得a=$±\sqrt{1+\sqrt{2}}$舍去.
故答案為:$±\sqrt{3}$.
點評 本題考查分段函數的應用,復合函數的單調性以及函數的值域的求法,考查轉化思想以及計算能力.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 4 | B. | 8 | C. | 16 | D. | 32 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 3 | B. | 5 | C. | 8 | D. | 13 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com