日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

設0<a<1,f(logax)=
a(x2-1)(a2-1)x

(Ⅰ)求f(x)的表達式,并指出其奇偶性、單調(diào)性(不必寫出證明過程);
(Ⅱ)解關于x的不等式:f(ax)+f(-2)>f(2)+f(-ax
(Ⅲ)(理)當n∈N時,比較f(n)與n的大小.
(文)若f(x)-4的值僅在x<2時取負數(shù),求a的取值范圍.
分析:(Ⅰ)令t=logax,則x=at,∴f(t)=
a(a2t-1)
(a2-1)at
,從而可得函數(shù)f(x)的表達式;
(Ⅱ)問題等價于f(ax)>f(2),從而ax>2,由于0<a<1,∴x<loga2;
(Ⅲ)將問題轉(zhuǎn)化為f(n)=
1
2an
[(a+a2n-1)+(a3+a2n-3)
+…+(a2n-1+a)],再利用基本不等式可知
1
2an
•n•2an=n(∵0<a<1)
,從而有f(n)≥n;若f(x)-4的值僅在x<2時取負數(shù)等價于f(x)<4時x<2恒成立,從而可解.
解答:解:(Ⅰ)令t=logax,則x=at,∴f(t)=
a(a2t-1)
(a2-1)at
,∴f(x)=
a
a2-1
(ax-a-x
),x∈R.(2分)     
∵f(-x)=f(x),∴奇函數(shù).∵0<a<1,∴函數(shù)為增函數(shù)(2分)
(Ⅱ)∵f(ax)-f(2)>f(2)-f(ax
∴f(ax)>f(2),ax>2,
∵0<a<1,∴x<loga2(4分)
(Ⅲ)(理料)f(1)=1,(1分)
當n≥2時,f(n)=
1
an
a[1-(a2)n]
1-a2
=
1
an
(a+a3+a5+
…a2n-1,)
=
1
2an
[(a+a2n-1)+(a3+a2n-3)
+…+(a2n-1+a)]>
1
2an
•n•2an=n(∵0<a<1)
(5分)
或用數(shù)學歸納法證明:f(k+1)=af(k)+a-k>ak+ak-k∵0<a<1,
∴可令
1
a
=1+α,α>0
,∴ka+a-k>ka+(1+α)n≥ka+1+kα=k(a+
1
a
-1)+1>k+1

(文科)∵f(x)<4?x<2?f(x)<f(2)∴f(2)=4,a=2-
3
(6分)
點評:本題主要考查函數(shù)解析式的求解及函數(shù)性質(zhì)的判斷,同時考查利用基本不等式進行大小比較,有一定的綜合性.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax-2lnx,a∈R
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)對于曲線上的不同兩點P1(x1,y1),P2(x2,y2),如果存在曲線上的點Q(x0,y0),且x1<x0<x2,使得曲線在點Q處的切線l∥P1P2,則稱l為弦P1P2的伴隨切線.當a=2時,已知兩點A(1,f(1)),B(e,f(e)),試求弦AB的伴隨切線l的方程;
(Ⅲ)設g(x)=
a+2ex
   (a>0)
,若在[1,e]上至少存在一個x0,使得f(x0)>g(x0)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓C的方程
x2
a2
+
y2
b2
=1(a>b>0)
,斜率為1的直L與橢C交于A(x1,y1)B(x2,y2)兩點.
(Ⅰ)若橢圓的離心率e=
3
2
,直線l過點M(b,0),且
OA
OB
=-
12
5
,求橢圓C的方程;
(Ⅱ)直線l過橢圓的右焦點F,設向量
OP
=λ(
OA
+
OB
)(λ>0),若點P在橢C上,λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

P1是橢圓+y2=1(a>0且a≠1)上不與頂點重合的任一點,P1P2是垂直于x軸的弦,A1(-a,0),A2(a,0)是橢圓的兩個頂點,直線A1P1與直線A2P2的交點為P.

(1)求點P的軌跡曲線C的方程;

(2)設曲線C與直線l:x+y=1相交于兩個不同的點A、B,求曲線C的離心率e的取值范圍;

(3)設曲線C與直線l:x+y=1相交于兩個不同的點A、B,O為坐標原點,且=-3,求a的值.

(文)(本小題滿分12分)設函數(shù)f(x)=x3+2ax2-3a2x+a(0<a<1).

(1)求函數(shù)f(x)的單調(diào)區(qū)間;

(2)若當x∈[a,2]時,恒有f(x)≤0,試確定實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=ax-2lnx,a∈R
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)對于曲線上的不同兩點P1(x1,y1),P2(x2,y2),如果存在曲線上的點Q(x0,y0),且x1<x0<x2,使得曲線在點Q處的切線lP1P2,則稱l為弦P1P2的伴隨切線.當a=2時,已知兩點A(1,f(1)),B(e,f(e)),試求弦AB的伴隨切線l的方程;
(Ⅲ)設g(x)=
a+2e
x
   (a>0)
,若在[1,e]上至少存在一個x0,使得f(x0)>g(x0)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

P1是橢圓+y2=1(a>0且a≠1)上不與頂點重合的任一點,P1P2是垂直于x軸的弦,A1(-a,0)、A2(a,0)是橢圓的兩個頂點,直線A1P1與直線A2P2的交點為P.

(1)求點P的軌跡曲線C的方程;

(2)設曲線C與直線l:x+y=1相交于兩個不同的點A、B,求曲線C的離心率e的取值范圍;

(3)設曲線C與直線l:x+y=1相交于兩個不同的點A、B,O為坐標原點,且=-3,求a的值.

(文)設函數(shù)f(x)=x3+2ax2-3a2x+a(0<a<1).

(1)求函數(shù)f(x)的單調(diào)區(qū)間;

(2)若當x∈[a,2]時,恒有f(x)≤0,試確定實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产99久 | 1区2区3区视频 | 精品在线播放 | 国产精品99久久免费观看 | 欧美字幕一区 | 精品国产a| 日韩一区二区三区在线播放 | 欧美在线一区二区三区 | 久久国产精品免费一区二区三区 | 免费在线日本 | 欧美日韩一区二区三区在线观看 | 99爱在线观看 | 99久久日韩精品视频免费在线观看 | 久久精品欧美 | 日本精品一区二区三区视频 | www.色网| 不卡av免费在线观看 | 日韩欧美一区二区三区免费观看 | 日韩视频一区二区 | 久久久亚洲成人 | 国产精品久久久久久久午夜片 | 精品一区亚洲 | 国产精品亚洲一区二区三区在线 | 欧美国产高清 | 密色视频| www日本com | 色资源在线 | 久久精品欧美一区二区三区不卡 | 午夜日韩| 久久国产一区 | 美女吊逼 | 日韩亚洲视频 | 婷婷天堂| 久久成人免费 | 国内久久精品 | 女男羞羞视频网站免费 | 人人爱干 | 黄色毛片免费看 | 欧美一区二 | 99久久久国产精品 | 香蕉视频91 |