【題目】如圖,四邊形ABCD內(nèi)接于⊙O,過點A作⊙O的切線EP交CB的延長線于P,∠PAB=35°.
(1)若BC是⊙O的直徑,求∠D的大小;
(2)若∠PAB=35°,求證: .
【答案】
(1)解:∵EP與⊙O相切于點A,∴∠ACB=∠PAB=35°,
又BC是⊙O的直徑,∴∠ABC=55°.
∵四邊形ABCD內(nèi)接于⊙O,∴∠ABC+∠D=180°,
∴∠D=112°
(2)證明:∵∠DAE=35°,
∴∠ACD=∠PAB,∠D=∠PBA,
∴△ADC∽△ABP,
∴ =
,∠DBA=∠BDA,
∴DA=BA,∴DA2=DCBP,AP2=PCBP,
∴
【解析】(1)由弦切角定理得∠ACB=∠PAB=25°,從而∠ABC=65°,由此利用四邊形ABCD內(nèi)接于⊙O,能求出∠D.(2)由∠DAE=25°,∠ACD=∠PAB,∠D=∠PBA,從而△ADC∽△PBA,由此能證明DA2=DCBP,AP2=PCBP,即可證明結(jié)論.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題 :若
,則
,下列說法正確的是( )
A. 命題 的否命題是“若
,則
”
B. 命題的逆否命題是“若
,則
”
C. 命題是真命題
D. 命題的逆命題是真命題
【答案】D
【解析】A. 命題 的否命題是若
B. 命題的逆否命題是“若
,則
C. 命題是假命題,比如當(dāng)x=-3,就不滿足條件,故選項不正確.
D. 命題的逆命題是若
是真命題.
故答案為:D.
【題型】單選題
【結(jié)束】
9
【題目】“雙曲線的方程為 ”是“雙曲線的漸近線方程為
”的( )
A. 充分不必要條件 B. 必要不充分條件
C. 充分必要條件 D. 既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè) 的內(nèi)角
,
,
所對的邊分別為
,
,
,且
,
.
(1)當(dāng) 時,求
的值;
(2)當(dāng)的面積為
時,求
的周長.
【答案】(1) (2)8
【解析】試題分析:(1)由 ,
,由正弦定理得到
;(2)根據(jù)面積公式得到
,再由余弦定理得到
,進(jìn)而得到
.
解析:
(1)因為 ,所以
由正弦定理 ,可得
(2)因為 的面積
所以
由余弦定理
得 ,即
所以 ,
所以
所以, 的周長為
【題型】解答題
【結(jié)束】
18
【題目】如圖,在四棱錐 中,底面
是平行四邊形,
,
,
,
底面
.
(1)求證: 平面
;
(2)若 為
的中點,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列 的前
項和為
,并且滿足
,
.
(1)求數(shù)列 通項公式;
(2)設(shè) 為數(shù)列
的前
項和,求證:
.
【答案】(1) (2)見解析
【解析】試題分析:(1)根據(jù)題意得到,
,兩式做差得到
;(2)根據(jù)第一問得到
,由錯位相減法得到前n項和,進(jìn)而可證和小于1.
解析:
(1)∵
當(dāng) 時,
當(dāng)時,
,即
∴數(shù)列 時以
為首項,
為公差的等差數(shù)列.
∴ .
(2)∵
∴ ①
②
由① ②得
∴
點睛:這個題目考查的是數(shù)列通項公式的求法及數(shù)列求和的常用方法;數(shù)列通項的求法中有常見的已知和
的關(guān)系,求
表達(dá)式,一般是寫出
做差得通項,但是這種方法需要檢驗n=1時通項公式是否適用;數(shù)列求和常用法有:錯位相減,裂項求和,分組求和等.
【題型】解答題
【結(jié)束】
22
【題目】已知 ,
分別是橢圓
:
(
)的左、右焦點,
是橢圓
上的一點,且
,橢圓
的離心率為
.
(1)求橢圓 的標(biāo)準(zhǔn)方程;
(2)若直線 :
與橢圓
交于不同兩點
,
,橢圓
上存在點
,使得以
,
為鄰邊的四邊形
為平行四邊形(
為坐標(biāo)原點).
(ⅰ)求實數(shù) 與
的關(guān)系;
(ⅱ)證明:四邊形 的面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知實數(shù)a、m滿足a= cosxdx,(x+a+m)7=a0+a1(x+1)+a2(x+1)2+…+a7(x+1)7 , 且(a0+a2+a4+a6)2﹣(a1+a3+a5+a7)2=37 , 則m=( )
A.﹣1或3
B.1或﹣3
C.1
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: (a>b>0)的離心率為
,頂點A(a,0),B(0,b),中心O到直線AB的距離為
.
(1)求橢圓C的方程;
(2)設(shè)橢圓C上一動點P滿足: ,其中M,N是橢圓C上的點,直線OM與ON的斜率之積為﹣
,若Q(λ,μ)為一動點,E1(﹣
,0),E2(
,0)為兩定點,求|QE1|+|QE2|的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com