【題目】(1)設(shè)曲線在原點處切線與直線
垂直,則a=______.
(2)已知等差數(shù)列中,已知
,則
=________________.
(3)若函數(shù),則
__________.
(4)曲線與直線
及
軸圍成的圖形的面積為__________.
【答案】
【解析】
(1)求函數(shù)導(dǎo)數(shù),再將x=0代入得切線斜率,進(jìn)而由直線垂直可得斜率之積為-1,從而得解;
(2)由,代入條件即可得解;
(3)求函數(shù)導(dǎo)數(shù),代入x=1即可得解;
(4)曲線與直線
的交點為(1,2),由定積分的幾何意義,計算
即可得解.
(1)解:∵,∴
,
∴曲線在點(0,0)處的切線方程是y=x,
∵直線y=x與直線垂直垂直∴
,即
.
故答案為1.
(2)等差數(shù)列中,已知
,∴
.
故答案為54.
(3)因為于是一個常數(shù)
所以,把
代入得
,
所以.
故答案為-2e.
(4) 曲線與直線
的交點為(1,2),
由曲線直線y=-x+3及x軸所圍成的圖形的面積是:
故答案為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:
的焦點為
,點
為
上異于頂點的任意一點,過
的直線
交
于另一點
,交
軸正半軸于點
,且有
,當(dāng)點
的橫坐標(biāo)為3時,
為正三角形.
(1)求的方程;
(2)若直線,且
和
相切于點
,試問直線
是否過定點,若過定點,求出定點坐標(biāo);若不過定點,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下四個命題:
①“若,則
”的逆否命題為真命題
②“”是“函數(shù)
在區(qū)間
上為增函數(shù)”的充分不必要條件
③若為假命題,則
,
均為假命題
④對于命題:
,
,則
為:
,
其中真命題的個數(shù)是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) 且f(x)的最小值為0.
(1)求a的值;
(2)若數(shù)列滿足a1=1,an+l=f(an)+2(n∈Z+),記Sn=[a1]+[a2]+…+[an],[m]表示不超過實數(shù)m的最大整數(shù),求Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線的焦點是
.問:是否存在內(nèi)接等腰直角三角形,該三角形的一條直角邊過
點?如果存在,存在幾個?如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,過點的直線與圓
相交于
兩點,過點
且與
垂直的直線與圓
的另一交點為
.
(1)當(dāng)點坐標(biāo)為
時,求直線
的方程;
(2)求四邊形面積
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:的左、右頂點分別為A,B,離心率為
,點P(1,
)為橢圓上一點.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)如圖,過點C(0,1)且斜率大于1的直線l與橢圓交于M,N兩點,記直線AM的斜率為k1,直線BN的斜率為k2,若k1=2k2,求直線l斜率的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:4x+3y+10=0,半徑為2的圓C與l相切,圓心C在x軸上且在直線l的右上方.
(1)求圓C的方程;
(2)過點M(1,0)的直線與圓C交于A,B兩點(A在x軸上方),問在x軸正半軸上是否存在定點N,使得x軸平分∠ANB?若存在,請求出點N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,
,
,
,△
是等邊三角形,
分別為
的中點.
(Ⅰ)求證:平面
;
(Ⅱ)若二面角的大小為
,求直線
與平面
所成角的正切值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com