【題目】在直角坐標系x0y中,把曲線α為參數)上每個點的橫坐標變為原來的
倍,縱坐標不變,得到曲線
以坐標原點為極點,以x軸正半軸為極軸,建立極坐標系,曲線
的極坐標方程
(1)寫出的普通方程和
的直角坐標方程;
(2)設點M在上,點N在
上,求|MN|的最小值以及此時M的直角坐標.
科目:高中數學 來源: 題型:
【題目】某調查機構對全國互聯網行業進行調查統計,得到整個互聯網行業從業者年齡分布餅狀圖,90后從事互聯網行業崗位分布條形圖,則下列結論中不正確的是( )
注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.
A.互聯網行業從業人員中90后占一半以上
B.互聯網行業中從事技術崗位的人數超過總人數的
C.互聯網行業中從事運營崗位的人數90后比80前多
D.互聯網行業中從事技術崗位的人數90后比80后多
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓的左、右頂點分別為
,
,上頂點為
,右焦點為
,已知
.
(1)證明:.
(2)已知直線的傾斜角為
,設
為橢圓
上不同于
,
的一點,
為坐標原點,線段
的垂直平分線交
于
點,過
且垂直于
的直線交
軸于
點,若
,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓與拋物線
在第一象限的交點為
,橢圓
的左、右焦點分別為
,其中
也是拋物線
的焦點,且
.
(1)求橢圓的方程;
(2)過的直線
(不與
軸重合)交橢圓
于
兩點,點
為橢圓
的左頂點,直線
分別交直線
于點
,求證:
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線y=k(x+1)(k>0)與拋物線C相交于A,B兩點,F為C的焦點,若|FA|=2|FB|,則|FA| =( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】很多關于整數規律的猜想都通俗易懂,吸引了大量的數學家和數學愛好者,有些猜想已經被數學家證明,如“費馬大定理”,但大多猜想還未被證明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的內容是:對于每一個正整數,如果它是奇數,則將它乘以再加1;如果它是偶數,則將它除以
;如此循環,最終都能夠得到
.下圖為研究“角谷猜想”的一個程序框圖.若輸入
的值為
,則輸出i的值為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】世界互聯網大會是由中國倡導并每年在浙江省嘉興市桐鄉烏鎮舉辦的世界性互聯網盛會,大會旨在搭建中國與世界互聯互通的國際平臺和國際互聯網共享共治的中國平臺,讓各國在爭議中求共識在共識中謀合作在合作中創共贏.2019年10月20日至22日,第六屆世界互聯網大會如期舉行,為了大會順利召開,組委會特招募了1 000名志愿者.某部門為了了解志愿者的基本情況,調查了其中100名志愿者的年齡,得到了他們年齡的中位數為34歲,年齡在歲內的人數為15,并根據調查結果畫出如圖所示的頻率分布直方圖:
(1)求,
的值并估算出志愿者的平均年齡(同一組的數據用該組區間的中點值代表);
(2)這次大會志愿者主要通過現場報名和登錄大會官網報名,即現場和網絡兩種方式報名調查.這100位志愿者的報名方式部分數據如下表所示,完善下面的表格,通過計算說明能
否在犯錯誤的概率不超過0.001的前提下,認為“選擇哪種報名方式與性別有關系”?
男性 | 女性 | 總計 | |
現場報名 | 50 | ||
網絡報名 | 31 | ||
總計 | 50 |
參考公式及數據:,其中
.
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“沉魚、落雁、閉月、羞花”是由精彩故事組成的歷史典故.“沉魚”,講的是西施浣紗的故事;“落雁”,指的就是昭君出塞的故事;“閉月”,是述說貂蟬拜月的故事;“羞花”,談的是楊貴妃醉酒觀花時的故事.她們分別是中國古代的四大美女.某藝術團要以四大美女為主題排演一部舞蹈劇,已知乙扮演楊貴妃,甲、丙、丁三人抽簽決定扮演的對象,則甲不扮演貂蟬且丙扮演昭君的概率為( )
A.B.
C.D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com