【題目】如圖,在多面體中,平面
平面
,四邊形
為正方形,四邊形
為梯形,且
,
,
.
(Ⅰ)求證:平面
;
(Ⅱ)求證:平面
;
(Ⅲ)在線段上是否存在點(diǎn)
,使得
平面
?若存在,求出
的值;若不存在,請說明理由.
【答案】(Ⅰ)見解析;(Ⅱ)見解析;(Ⅲ)見解析
【解析】
(Ⅰ)轉(zhuǎn)化為證明;(Ⅱ)轉(zhuǎn)化為證明
,
;(Ⅲ)根據(jù)線面平行的性質(zhì)定理.
(Ⅰ)因?yàn)樗倪呅?/span>為正方形,所以
,由于
平面
,
平面
,所以
平面
.
(Ⅱ)因?yàn)樗倪呅?/span>為正方形,
所以.平面
平面
,
平面平面
,
所以平面
.所以
.
取中點(diǎn)
,連接
.由
,
,
,
可得四邊形為正方形.
所以.所以
.所以
.
因?yàn)?/span>,所以
平面
.
(Ⅲ)存在,當(dāng)為
的中點(diǎn)時,
平面
,此時
.
證明如下:
連接交
于點(diǎn)
,由于四邊形
為正方形,
所以是
的中點(diǎn),同時也是
的中點(diǎn).
因?yàn)?/span>,又四邊形
為正方形,
所以,
連接,所以四邊形
為平行四邊形.
所以.又因?yàn)?/span>
平面
,
平面
,
所以平面
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個命題:①命題“若,則
”的逆否命題為假命題:
②命題“若,則
”的否命題是“若
,則
”;
③若“”為真命題,“
”為假命題,則
為真命題,
為假命題;
④函數(shù)有極值的充要條件是
或
.
其中正確的個數(shù)有( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校學(xué)生參加了“鉛球”和“立定跳遠(yuǎn)”兩個科目的體能測試,每個科目的成績分為,
,
,
,
五個等級,分別對應(yīng)5分,4分,3分,2分,1分,該校某班學(xué)生兩科目測試成績的數(shù)據(jù)統(tǒng)計如圖所示,其中“鉛球”科目的成績?yōu)?/span>
的學(xué)生有8人.
(Ⅰ)求該班學(xué)生中“立定跳遠(yuǎn)”科目中成績?yōu)?/span>的人數(shù);
(Ⅱ)若該班共有10人的兩科成績得分之和大于7分,其中有2人10分,3人9分,5人8分.從這10人中隨機(jī)抽取兩人,求兩人成績之和的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù)),直線
與曲線
:
交于
,
兩點(diǎn).
(Ⅰ)求的長;
(Ⅱ)在以為極點(diǎn),
軸的正半軸為極軸建立的極坐標(biāo)系中,設(shè)點(diǎn)
的極坐標(biāo)為
,求點(diǎn)
到線段
中點(diǎn)
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)交
軸于
兩點(diǎn)(
不重合),交
軸于
點(diǎn). 圓
過
三點(diǎn).下列說法正確的是( )
① 圓心在直線
上;
② 的取值范圍是
;
③ 圓半徑的最小值為
;
④ 存在定點(diǎn),使得圓
恒過點(diǎn)
.
A. ①②③B. ①③④C. ②③D. ①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在
軸上,短軸長為
,且兩個焦點(diǎn)和短軸的兩個端點(diǎn)恰為一個正方形的頂點(diǎn).
(1)求橢圓的方程;
(2)設(shè)過右焦點(diǎn)與
軸不垂直的直線與橢圓交于
、
兩點(diǎn).在線段
上是否存在點(diǎn)
,使得以
、
為鄰邊的平行四邊形是菱形?若存在,求出
的取值范圍;若不存在,
請說明理由;
(3)設(shè)點(diǎn)在橢圓上運(yùn)動,
,且點(diǎn)
到直線
的距離等于
,試求動點(diǎn)
的軌
跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在xOy平面上,將雙曲線的一支
及其漸近線
和直線
、
圍成的封閉圖形記為D,如圖中陰影部分,記D繞y軸旋轉(zhuǎn)一周所得的幾何體為
,過
作
的水平截面,計算截面面積,利用祖暅原理得出
體積為________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果對于函數(shù)f(x)定義域內(nèi)任意的兩個自變量的值x1 , x2 , 當(dāng)x1<x2時,都有f(x1)≤f(x2),且存在兩個不相等的自變量值y1 , y2 , 使得f(y1)=f(y2),就稱f(x)為定義域上的不嚴(yán)格的增函數(shù).
則 ① , ②
,
③ , ④
,
四個函數(shù)中為不嚴(yán)格增函數(shù)的是 ,若已知函數(shù)g(x)的定義域、值域分別為A、B,A={1,2,3},BA,且g(x)為定義域A上的不嚴(yán)格的增函數(shù),那么這樣的g(x)有 個.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P1(a1 , b1),P2(a2 , b2),…,Pn(an , bn)(n∈N*)都在函數(shù)y=的圖象上.
(Ⅰ)若數(shù)列{bn}是等差數(shù)列,求證數(shù)列{an}為等比數(shù)列;
(Ⅱ)若數(shù)列{an}的前n項和為Sn=1﹣2﹣n , 過點(diǎn)Pn , Pn+1的直線與兩坐標(biāo)軸所圍成三角形面積為cn , 求使cn≤t對n∈N*恒成立的實(shí)數(shù)t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com