日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)=ex﹣x2+2a+b(x∈R)的圖象在x=0處的切線為y=bx.(e為自然對數的底數).
(Ⅰ)求a,b的值;
(Ⅱ)若k∈Z,且f(x)+ (3x2﹣5x﹣2k)≥0對任意x∈R恒成立,求k的最大值.

【答案】解:(I)f′(x)=ex﹣2x,f′(0)=1=b,f(0)=1+2a+b=0,

聯立解得b=1,a=﹣1.

(II)由(I)可得:f(x)=e2﹣x2﹣1.

f(x)+ (3x2﹣5x﹣2k)≥0對任意x∈R恒成立k≤ex+ x﹣1對x∈R恒成立.

令h(x)=ex+ x﹣1,h′(x)=ex+x﹣ ,h(x)=ex+1>0恒成立.

∴h′(x)在R上單調遞增.

h′(0)= <0,h′(1)= >0, = <0, = =0.

∴存在唯一零點x0 ,使得h′(x0)=0,

當x∈(﹣∞,x0)時,h′(x0)<0,函數h(x)在(﹣∞,x0)單調遞減;當x∈(x0,+∞)時,h′(x0)>0,函數h(x)在(x0,+∞)上單調遞增.

∴h(x)min=h(x0)= + ﹣1,又h′(x0)= +x0 =0,∴ = ﹣x0

∴h(x0)= ﹣x0+ ﹣1=

∵x0 ,∴h(x0)∈

又k≤ex+ x﹣1對x∈R恒成立k≤h(x0),k∈Z.

∴k的最大值為﹣1


【解析】(I)f′(x)=ex﹣2x,f′(0)=1=b,f(0)=1+2a+b=0,聯立解得b,a.(II)由(I)可得:f(x)=e2﹣x2﹣1.f(x)+ (3x2﹣5x﹣2k)≥0對任意x∈R恒成立k≤ex+ x﹣1對x∈R恒成立.令h(x)=ex+ x﹣1,h′(x)=ex+x﹣ ,h(x)=ex+1>0恒成立.可得h′(x)在R上單調遞增.h′(0)<0,h′(1)>0, <0, >0.可得存在唯一零點x0 ,使得h′(x0)=0,利用單調性可得:h(x)min=h(x0)= + ﹣1,進而得出結論.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知矩形ADEF和菱形ABCD所在平面互相垂直,如圖,其中AF=1,AD=2,∠ADC= ,點N時線段AD的中點.
(Ⅰ)試問在線段BE上是否存在點M,使得直線AF∥平面MNC?若存在,請證明AF∥平面MNC,并求出 的值,若不存在,請說明理由;
(Ⅱ)求二面角N﹣CE﹣D的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0,|φ|< )的最小正周期為π,且f(﹣x)=f(x),則(
A.f(x)在(0, )單調遞增
B.f(x)在( )單調遞減
C.f(x)在( )單調遞增
D.f(x)在( ,π)單調遞增

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如果存在常數a,使得數列{an}滿足:若x是數列{an}中的一項,則a﹣x也是數列{an}中的一項,稱數列{an}為“兌換數列”,常數a是它的“兌換系數”.
(1)若數列:2,3,6,m(m>6)是“兌換系數”為a的“兌換數列”,求m和a的值;
(2)已知有窮等差數列{bn}的項數是n0(n0≥3),所有項之和是B,求證:數列{bn}是“兌換數列”,并用n0和B表示它的“兌換系數”;
(3)對于一個不少于3項,且各項皆為正整數的遞增數列{cn},是否有可能它既是等比數列,又是“兌換數列”?給出你的結論,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱錐P﹣ABC中,AC=BC=2,∠ACB=90°,側面PAB為等邊三角形,側棱
(Ⅰ)求證:PC⊥AB;
(Ⅱ)求證:平面PAB⊥平面ABC;
(Ⅲ)求二面角B﹣AP﹣C的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲、乙兩人進行圍棋比賽,約定先連勝兩局者直接贏得比賽,若賽完 局仍未出現連勝,則判定獲勝局數多者贏得比賽.假設每局甲獲勝的概率為 ,乙獲勝的概率為 ,各局比賽結果相互獨立.
(Ⅰ)求甲在4局以內(含 4 局)贏得比賽的概率;
(Ⅱ)記 X 為比賽決出勝負時的總局數,求X的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在2013年至2016年期間,甲每年6月1日都到銀行存入m元的一年定期儲蓄,若年利率為q保持不變,且每年到期的存款本息自動轉為新的一年定期,到2017年6月1日甲去銀行不再存款,而是將所有存款的本息全部取回,則取回的金額是(
A.m(1+q)4
B.m(1+q)5
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知 =( sin ,cos =(cos ,cos ),f(x)=
(1)若函數f(x)的最小正周期和單調遞增區間;
(2)若a,b,c分別是△ABC的內角A,B,C所對的邊,且a=2,(2a﹣b)cosC=ccosB, ,求c.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x),g(x)分別是定義在R上的偶函數和奇函數,且f(x)+g(x)=2x , 若存在x0∈[1,2]使得等式af(x0)+g(2x0)=0成立,則實數a的取值范圍是

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日韩亚洲精品视频 | 国产精品日韩 | 欧美亚洲激情视频 | 日本三级做a全过程在线观看 | 日韩伦理一区二区三区 | 日韩精品免费一区二区夜夜嗨 | 日本在线观看免费 | 亚洲精品一二三四五区 | 国产午夜精品一区二区 | 视频一区二区三区在线观看 | 欧美亚洲国产日韩 | 91麻豆精品久久久久蜜臀 | 激情五月婷婷综合 | 韩国电影久久影院 | 欧美日韩中文国产一区发布 | 成人免费看 | 国产美女高潮视频 | 天天草天天 | 成人欧美一区二区三区在线湿哒哒 | 久久精品123 | 高清不卡一区 | 亚洲午夜电影 | 天天艹逼网 | 欧美性猛交一区二区三区精品 | 亚洲精品动漫久久久久 | 久操成人 | 日韩视频一区二区三区在线观看 | 日韩一级片免费在线观看 | 久久久99日产 | 久久亚洲一区二区三区四区 | 国产一区二区视频免费 | 97在线资源| 亚洲欧美激情精品一区二区 | 国产成人精品免费 | 精品国产一区二区三区在线观看 | 精品久久久久久久 | 亚洲精品一区二区三区 | 91精品国产一区二区 | 精品国产欧美一区二区 | www.日韩视频 | 又大又粗又长又黄视频 |