【題目】(1)已知命題:實數
滿足
,命題
:實數
滿足方程
表示的焦點在
軸上的橢圓,且
是
的充分不必要條件,求實數
的取值范圍;
(2)設命題:關于
的不等式
的解集是
;
:函數
的定義域為
.若
是真命題,
是假命題,求實數
的取值范圍.
【答案】(1);(2)
【解析】分析:(1)利用一元二次不等式的解法化簡,利用橢圓的標準方程化簡
,由包含關系列不等式求解即可;(2)化簡命題
可得
,化簡命題
可得
,由
為真命題,
為假命題,可得
一真一假,分兩種情況討論,對于
真
假以及
假
真分別列不等式組,分別解不等式組,然后求并集即可求得實數
的取值范圍.
詳解:(1)由得:
,即命題
由表示焦點在
軸上的橢圓,可得
,解得
,即命題
.
因為是
的充分不必要條件,所以
或
解得:,∴實數
的取值范圍是
.
(2)解:命題為真命題時,實數
的取值集合為
對于命題:函數
的定義域為
的充要條件是
①恒成立.
當時,不等式①為
,顯然不成立;
當時,不等式①恒成立的條件是
,解得
所以命題為真命題時,
的取值集合為
由“是真命題,
是假命題”,可知命題
、
一真一假
當真
假時,
的取值范圍是
當假
真時,
綜上,的取值范圍是
.
科目:高中數學 來源: 題型:
【題目】從某企業生產的產品中抽取100件,測量這些產品的一項質量指標值,由測量結果得如下頻數分布表:
質量指標值分組 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125) |
頻數 | 6 | 26 | 38 | 22 | 8 |
(1)在表格中作出這些數據的頻率分布直方圖;
(2)求這些數據的眾數和中位數
(3)估計這種產品質量指標的平均數(同一組中的數據用該組區間的中點值作代表);
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)與g(x)是定義在同一區間[a,b]上的兩個函數,若函數y=f(x)﹣g(x)在x∈[a,b]上有兩個不同的零點,則稱f(x)和g(x)在[a,b]上是“關聯函數”,區間[a,b]稱為“關聯區間”.若f(x)=x2﹣3x+4與g(x)=2x+m在[0,3]上是“關聯函數”,則m的取值范圍 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國古代數學典籍《九章算術》“盈不足”中有一道兩鼠穿墻問題:“今有垣厚十尺,兩鼠對穿,初日各一尺,大鼠日自倍,小鼠日自半,問幾何日相逢?”現用程序框圖描述,如圖所示,則輸出結果n=( )
A.4
B.5
C.2
D.3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知在四棱錐中,底面
是邊長為4的正方形,
是正三角形,平面
平面
,
分別是
的中點.
(1)求證:平面平面
;
(2)若是線段
上一點,求三棱錐
的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著蘋果6手機的上市,很多消費者覺得價格偏高,尤其是一部分大學生可望而不可及,因此“國美在線”推出無抵押分期付款購買方式,某分期店對最近100位采用分期付款的購買者進行統計,統計結果如下表所示:
付款方式 | 分1期 | 分2期 | 分3期 | 分4期 | 分5期 |
頻 數 | 35 | 25 | a | 10 | b |
已知分3期付款的頻率為0.15,并且店銷售一部蘋果6,顧客分1期付款,其利潤為1千元;分2期或3期付款,其利潤為1.5千元;分4期或5期付款,其利潤為2千元,以頻率作為概率.
(1)求事件A:“購買的3位顧客中,至多有1位分4期付款”的概率;
(2)用X表示銷售一該手機的利潤,求X的分布列及數學期望E(x)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知橢圓
的焦距為
,離心率為
,橢圓的右頂點為
.
(1)求該橢圓的方程;
(2)過點作直線
交橢圓于兩個不同點
,求證:直線
的斜率之和為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)解不等式;
(2)若函數在區間
上存在零點,求實數
的取值范圍;
(3)若函數,其中
為奇函數,
為偶函數,若不等式
對任意
恒成立,求實數
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com