【題目】已知函數f(x)=xex﹣a(x﹣1)(a∈R)
(1)若函數f(x)在x=0處有極值,求a的值及f(x)的單調區間
(2)若存在實數x0∈(0, ),使得f(x0)<0,求實數a的取值范圍.
【答案】
(1)解:f′(x)=(x+1)ex﹣a,
由f′(0)=0,解得:a=1,
故f′(x)=(x+1)ex﹣1,
令f′(x)>0,解得:x>0,令f′(x)<0,解得:x<0,
故f(x)在(﹣∞,0)遞減,在(0,+∞)遞增
(2)解:若f(x)<0在x∈(0, )上有解,
即xex<a(x﹣1),a< 在x∈(0,
)上有解,
設h(x)= ,x∈(0,
),
則h′(x)= <0,
故h(x)在(0, )遞減,
h(x)在(0, )的值域是(﹣
,0),
故a<h(0)=0
【解析】(1)求出函數的導數,求出a的值,解關于導函數的不等式,求出函數的單調區間即可;(2)問題轉化為a< 在x∈(0,
)上有解,設h(x)=
,x∈(0,
),根據函數的單調性求出a的范圍即可.
【考點精析】根據題目的已知條件,利用函數的極值與導數的相關知識可以得到問題的答案,需要掌握求函數的極值的方法是:(1)如果在
附近的左側
,右側
,那么
是極大值(2)如果在
附近的左側
,右側
,那么
是極小值.
科目:高中數學 來源: 題型:
【題目】下列命題中正確命題的個數是( ) ①對于命題p:x∈R,使得x2+x+1<0,則¬p:x∈R,均有x2+x+1>0;
②命題“已知x,y∈R,若x+y≠3,則x≠2或y≠1”是真命題;
③回歸直線的斜率的估計值為1.23,樣本點的中心為(4,5),則回歸直線方程為 =1.23x+0.08;
④m=3是直線(m+3)x+my﹣2=0與直線mx﹣6y+5=0互相垂直的充要條件.
A.1
B.3
C.2
D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐S﹣ABCD中,底面ABCD為直角梯形,AB∥CD,BC⊥CD,平面SCD⊥平面ABCD,SC=SD=CD=AD=2AB,M,N分別為SA,SB的中點,E為CD中點,過M,N作平面MNPQ分別與BC,AD交于點P,Q,若 =t
.
(1)當t= 時,求證:平面SAE⊥平面MNPQ;
(2)是否存在實數t,使得二面角M﹣PQ﹣A的平面角的余弦值為 ?若存在,求出實數t的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x|+|x+1|.
(1)解關于x的不等式f(x)>3;
(2)若x∈R,使得m2+3m+2f(x)≥0成立,試求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線C:的兩個頂點分別為A,B,點P是C上異于A,B的一點,直線PA,PB的傾斜角分別為α,β.若
,則C的離心率為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=(x﹣a)|x﹣a|+b,a,b∈R,則下列敘述中,正確的序號是( ) ①對任意實數a,b,函數y=f(x)在R上是單調函數;
②對任意實數a,b,函數y=f(x)在R上都不是單調函數;
③對任意實數a,b,函數y=f(x)的圖象都是中心對稱圖象;
④存在實數a,b,使得函數y=f(x)的圖象不是中心對稱圖象.
A.①③
B.②③
C.①④
D.③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,AB=BC=CA=2,AA1=4,D為A1B1的中點,E為棱BB1上的點,AB1⊥平面C1DE,且B1,C1,D,E四點在同一球面上,則該球的表面積為( )
A. 9π B. 11π C. 12π D. 14π
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形ABCD是菱形,ADNM是矩形,平面ADNM⊥平面ABCD,∠DAB=60°,AD=2,AM=1,E為AB的中點.
(Ⅰ)求證:AN∥平面MEC;
(Ⅱ)在線段AM上是否存在點P,使二面角P﹣EC﹣D的大小為 ?若存在,求出AP的長h;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)是定義在R上的偶函數,且f(x+2)=f(x)對x∈R恒成立,當x∈[0,1]時,f(x)=2x , 則 =( )
A.
B.
C.
D.1
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com