日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

有如下結(jié)論:“圓x2+y2=r2上一點(diǎn)P(x0,y0)處的切線方程為x0y+y0y=r2”,類比也有結(jié)論:“橢圓數(shù)學(xué)公式=1(a>b>0)上一點(diǎn)P(x0,y0)處的切線方程為數(shù)學(xué)公式數(shù)學(xué)公式=1”,過橢圓C:數(shù)學(xué)公式的右準(zhǔn)線l上任意一點(diǎn)M引橢圓C的兩條切線,切點(diǎn)為 A、B.直線AB恒過一定點(diǎn)________.

(1,0)
分析:設(shè)出M的坐標(biāo),及兩個(gè)個(gè)切點(diǎn)的坐標(biāo),由橢圓方程寫出切線方程,把M的坐標(biāo)代入切線方程,得到切點(diǎn)所在的直線方程,即可得到結(jié)論.
解答:設(shè)M(2,t)(t∈R),A(x1,y1),B(x2,y2),則MA的方程為
∵點(diǎn)M在MA上,∴x1+ty1=1①,同理可得x2+ty2=1 ②
由①②知AB的方程為 x+ty=1,即x-1=ty
∴直線AB恒過一定點(diǎn)(1,0)
故答案為(1,0)
點(diǎn)評(píng):本題考查類比推理,考查橢圓的切線方程,考查直線恒過定點(diǎn),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

有如下結(jié)論:“圓x2+y2=r2上一點(diǎn)P(x0,y0)處的切線方程為x0y+y0y=r2”,類比也有結(jié)論:“橢圓
x2
a2
+
y2
b2
=1(a>b>0)上一點(diǎn)P(x0y0)
處的切線方程為
x
 
0
x
a2
+
y0y
b2
=1
”,過橢圓C:
x2
4
+y2=1
的右準(zhǔn)線l上任意一點(diǎn)M引橢圓C的兩條切線,切點(diǎn)為A、B.
(1)求證:直線AB恒過一定點(diǎn);
(2)當(dāng)點(diǎn)M的縱坐標(biāo)為1時(shí),求△ABM的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
,(a>b>0)的兩焦點(diǎn)分別為F1、F2|F1F2|=4
2
,離心率e=
2
2
3
.過直線l:x=
a2
c
上任意一點(diǎn)M,引橢圓C的兩條切線,切點(diǎn)為A、B.
(1)在圓中有如下結(jié)論:“過圓x2+y2=r2上一點(diǎn)P(x0,y0)處的切線方程為:x0x+y0y=r2”.由上述結(jié)論類比得到:“過橢圓
x2
a2
+
y2
b2
=1
(a>b>0),上一點(diǎn)P(x0,y0)處的切線方程”(只寫類比結(jié)論,不必證明).
(2)利用(1)中的結(jié)論證明直線AB恒過定點(diǎn)(2
2
,0
);
(3)當(dāng)點(diǎn)M的縱坐標(biāo)為1時(shí),求△ABM的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有如下結(jié)論:“圓x2+y2=r2上一點(diǎn)P(x0,y0)處的切線方程為x0y+y0y=r2”,類比也有結(jié)論:“橢圓
x2
a2
+
y2
b2
=1(a>b>0)上一點(diǎn)P(x0,y0)處的切線方程為
x0x
a2
+
y0y
b2
=1”,過橢圓C:
x2
2
+y2=1
的右準(zhǔn)線l上任意一點(diǎn)M引橢圓C的兩條切線,切點(diǎn)為 A、B.直線AB恒過一定點(diǎn)
(1,0)
(1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年北京市順義區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

已知橢圓C:,(a>b>0)的兩焦點(diǎn)分別為F1、F2,離心率.過直線l:上任意一點(diǎn)M,引橢圓C的兩條切線,切點(diǎn)為A、B.
(1)在圓中有如下結(jié)論:“過圓x2+y2=r2上一點(diǎn)P(x,y)處的切線方程為:xx+yy=r2”.由上述結(jié)論類比得到:“過橢圓(a>b>0),上一點(diǎn)P(x,y)處的切線方程”(只寫類比結(jié)論,不必證明).
(2)利用(1)中的結(jié)論證明直線AB恒過定點(diǎn)();
(3)當(dāng)點(diǎn)M的縱坐標(biāo)為1時(shí),求△ABM的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年北京市一模試卷及高頻考點(diǎn)透析:推理與證明 幾何證明選講(解析版) 題型:解答題

已知橢圓C:,(a>b>0)的兩焦點(diǎn)分別為F1、F2,離心率.過直線l:上任意一點(diǎn)M,引橢圓C的兩條切線,切點(diǎn)為A、B.
(1)在圓中有如下結(jié)論:“過圓x2+y2=r2上一點(diǎn)P(x,y)處的切線方程為:xx+yy=r2”.由上述結(jié)論類比得到:“過橢圓(a>b>0),上一點(diǎn)P(x,y)處的切線方程”(只寫類比結(jié)論,不必證明).
(2)利用(1)中的結(jié)論證明直線AB恒過定點(diǎn)();
(3)當(dāng)點(diǎn)M的縱坐標(biāo)為1時(shí),求△ABM的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 五月婷婷免费视频 | 婷婷综合网 | 久久青青 | 国产亚洲精品久久久久动 | 亚洲一区二区三区高清 | 日本精品视频在线观看 | 中文字幕在线观看第一页 | 久久久久久国产免费视网址 | 国产精品久久久久久久久久妞妞 | 五月婷婷在线视频 | 亚洲一区二区三区四区五区午夜 | 亚洲精品1 | 久久亚洲精品国产亚洲老地址 | 成人影院一区二区三区 | 日本精品一区 | 亚洲欧美日韩另类精品一区二区三区 | 99热这里有精品 | 中文一区 | 亚洲精品一区二区三区蜜桃久 | 二区免费 | 欧美手机在线 | 免费观看一级特黄欧美大片 | 1区2区视频 | 日韩国产欧美视频 | 国产精品对白一区二区三区 | 在线观看a视频 | 在线小视频| 欧美xxxx色视频在线观看免费 | 日日夜夜天天 | 欧美日韩精品一区二区三区蜜桃 | 激情小视频在线观看 | 桃色视频国产 | 久久三区| 国产一区二区高潮 | 欧美精品1区2区3区 亚洲区在线 | www.4虎 | 亚洲欧美一区二区三区久久 | 97超碰网 | 精品一区二区久久久久久久网站 | 另类 综合 日韩 欧美 亚洲 | 精品久久久久一区二区国产 |