【題目】如圖,在直角梯形中,
,且
分別為線段
的中點,沿
把
折起,使
,得到如下的立體圖形.
(1)證明:平面平面
;
(2)若,求點
到平面
的距離.
科目:高中數學 來源: 題型:
【題目】某學校在學校內招募了名男志愿者和
名女志愿者.將這
名志愿者的身高編成如右莖葉圖(單位:
),若身高在
以上(包括
)定義為“高個子”,身高在
以下(不包括
)定義為“非高個子”,且只有“女高個子”才能擔任“禮儀小姐”.
(Ⅰ)如果用分層抽樣的方法從“高個子”和“非高個子”中抽取人,再從這
人中選
人,那么至少有一人是“高個子”的概率是多少?
(Ⅱ)若從所有“高個子”中選名志愿者,用
表示所選志愿者中能擔任“禮儀小姐”的人數,試寫出
的分布列,并求
的數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列的前n項和為
,對任意的正整數n,都有
成立,記
(
),
(1)求數列的通項公式;
(2)記(
),設數列
的前n和為
,求證:對任意正整數n,都有
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列的前
項和為
,滿足
(
),數列
滿足
(
),且
(1)證明數列為等差數列,并求數列
和
的通項公式;
(2)若,求數列
的前
項和
;
(3)若,數列
的前
項和為
,對任意的
,都有
,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,且
過點
.
(1)求橢圓的方程;
(2)若直線與橢圓
交于
兩點(點
均在第一象限),且直線
的斜率成等比數列,證明:直線
的斜率為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】四棱錐的底面ABCD是邊長為2的菱形,側面PAD是正三角形,
,E為AD的中點,二面角
為
.
證明:
平面PBE;
求點P到平面ABCD的距離;
求直線BC與平面PAB所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線:
,若存在實數
使得一條曲線與直線
有兩個不同的交點,且以這兩個交點為端點的線段長度恰好等于
,則稱此曲線為直線
的“絕對曲線”.下面給出的四條曲線方程:
①;②
;③
;④
.
其中直線的“絕對曲線”的條數為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,O為坐標原點,以O為圓心的圓與直線
相切.
(1)求圓O的方程.
(2)直線與圓O交于A,B兩點,在圓O上是否存在一點M,使得四邊形
為菱形?若存在,求出此時直線l的斜率;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com