【題目】已知圓經過點
,和直線
相切,且圓心在直線
上.
(1)求圓的方程;
(2)已知直線經過原點,并且被圓
截得的弦長為2,求直線
的方程.
【答案】(1) (2)
或
【解析】試題分析:(1)由題可知,根據圓心在直線上,可將圓心設為
,圓心與點
的距離為半徑,并且圓心到切線的距離也是半徑,根據此等量關系,可得出
,由此可求圓
的方程;(2)由題可知,直線的斜率是否存在不可知,故需要分類討論,當直線的斜率不存在時,可直接得到直線方程
,當直線的斜率存在時,設直線方程為
,由弦長公式可得
,由此即可求得到直線
的方程.
試題解析:解:(1)設圓心的坐標為,
則,化簡得
,解得
.
,半徑
.
圓C的方程為
.
(2)①當直線的斜率不存在時,直線
的方程為
,此時直線l被圓C截得的弦長為2,滿足條件。
②當直線的斜率存在時,設直線
的方程為
,由題得
,解得
,
直線
的方程為
.
綜上所述:直線l的方程為或
.
科目:高中數學 來源: 題型:
【題目】數學家歐拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半這條直線被后人稱之為三角形的歐拉線
若
的頂點
,
,且
的歐拉線的方程為
,則頂點C的坐標為
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=(a+1)lnx+ x2(a<﹣1)對任意的x1、x2>0,恒有|f(x1)﹣f(x2)|≥4|x1﹣x2|,則a的取值范圍為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】片森林原來面積為a,計劃每年砍伐森林面積是上一年末森林面積的p%,當砍伐到原來面積的一半時,所用時間是10年,已知到今年末為止,森林剩余面積為原來面積的,為保護生態環境,森林面積至少要保留原來面積的
.
(1)求每年砍伐面積的百分比p%;
(2)到今年為止,該森林已砍伐了多少年?
(3)今年以后至多還能再砍伐多少年?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四邊形ABCD是邊長為2的正方形,平面ABCD⊥平面ABEF,AF∥BE,AB⊥BE,AB=BE=2,AF=1.
(Ⅰ)求證:AC⊥平面BDE;
(Ⅱ)求證:AC∥平面DEF;
(Ⅲ)求三棱錐A—DEF的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從2017年1月18日開始,支付寶用戶可以通過“掃‘福’字”和“參與螞蟻森林”兩種方式獲得福卡(愛國福、富強福、和諧福、友善福、敬業福),除夕夜22:18,每一位提前集齊五福的用戶都將獲得一份現金紅包.某高校一個社團在年后開學后隨機調查了80位該校在讀大學生,就除夕夜22:18之前是否集齊五福進行了一次調查(若未參與集五福的活動,則也等同于未集齊五福),得到具體數據如下表:
是否集齊五福 性別 | 是 | 否 | 合計 |
男 | 30 | 10 | 40 |
女 | 35 | 5 | 40 |
合計 | 65 | 15 | 80 |
(1)根據如上的列聯表,能否在犯錯誤的概率不超過0.05的前提下,認為“集齊五福與性別有關”?
(2)計算這80位大學生集齊五福的頻率,并據此估算該校10000名在讀大學生中集齊五福的人數;
(3)為了解集齊五福的大學生明年是否愿意繼續參加集五福活動,該大學的學生會從集齊五福的學生中,選取2位男生和3位女生逐個進行采訪,最后再隨機選取3次采訪記錄放到該大學的官方網站上,求最后被選取的3次采訪對象中至少有一位男生的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com