日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知向量
a
=(sinx,
3
4
),
b
=(cosx,-1).
(1)當
a
b
時,求cos2x-sin2x的值;
(2)設函數f(x)=2(
a
+
b
)-
b
,已知在△ABC中,內角A、B、C的對邊分別為a、b、c,若a=
3
,b=2,sinB=
6
3
,求 f(x)+4cos(2A+
π
6
)(x∈[0,
π
3
])的取值范圍.
分析:(1)由
a
b
可得
3
4
cosx+sinx=0
,從而可求tanx,而cos2x-sin2x=
cos2x-2sinxcosx
cos2x+sin2x

(2)由正弦定理得,
a
sinA
=
b
sinB
可得sinA=
2
2
 可求A=
π
4
代入可得f(x)=2(
a
+
b
)•
b
 =
2
sin(2x+
π
4
)+
3
2
,結合已知x∈[0,
π
3
]
可求函數的值域
解答:解:(1)∵
a
b

3
4
cosx+sinx=0

tanx=-
3
4
(2分)
cos2x-sin2x=
cos2x-2sinxcosx
sin2x+cos2x
=
1-2tanx
1+tan2x
=
8
5
(6分)
(2)f(x)=2(
a
+
b
)•
b
 =
2
sin(2x+
π
4
)+
3
2

由正弦定理得,
a
sinA
=
b
sinB
可得sinA=
2
2
 
所以A=
π
4
(9分)
f(x)+4cos(2A+
π
6
)=
2
sin(2x+
π
4
)-
1
2

x∈[0,
π
3
]
2x+
π
4
∈[
π
4
11π
12
]

所以
3
2
-1≤f(x)+4cos(2A+
π
6
)≤
2
-
1
2
(12分)
點評:本題主要考查了向量平行的坐標表示,利用1=sin2x+cos2x的代換,求解含有sinx,cosx的齊次式,向量的數量積的坐標表示,三角函數在閉區間上的值域的求解.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知向量
a
=(sinθ,-2),
b
=(cosθ,1)
(1)若
a
b
,求tanθ;
(2)當θ∈[-
π
12
π
3
]時,求f(θ)=
a
b
-2|
a
+
b
|2的最值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(sinθ,1),
b
=(1,-cosθ),θ∈(0,π)
(Ⅰ)若
a
b
,求θ;
(Ⅱ)若
a
b
=
1
5
,求tan(2θ+
π
4
)
的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(sinθ,cosθ),
b
=(2,1),滿足
a
b
,其中θ∈(0,
π
2
)

(I)求tanθ值;
(Ⅱ)求
2
sin(θ+
π
4
)(sinθ+2cosθ)
cos2θ
的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(sinθ,cosθ)與
b
=(
3
,1),其中θ∈(0,
π
2

(1)若
a
b
,求sinθ和cosθ的值;
(2)若f(θ)=(
a
b
)
2
,求f(θ)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(sinθ,
3
cosθ),
b
=(1,1).
(1)若
a
b
,求tanθ的值;
(2)若|
a
|=|
b
|,且0<θ<π,求角θ的大小.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 免费观看黄a一级视频 | 成人免费一区二区三区视频网站 | 中文字幕在线不卡 | 精品欧美一区二区三区在线观看 | 日韩成人av在线 | 94国产精品 | 91精品国产综合久久久久久丝袜 | 麻豆视频在线 | 欧美午夜一区 | 日韩在线不卡 | 狠狠做深爱婷婷综合一区 | 久久久国产一区二区三区四区小说 | 免费成人在线网站 | 美女人人操 | 草逼操 | 久久国产精品一区 | 亚洲九九九 | 红色av社区 | 日日网 | 精品久久久久久久久久久久 | 日本特黄a级高清免费大片 综合一区二区三区 | 成人在线观看一区 | 日韩中文字幕在线观看 | 日韩中文字幕欧美 | 久久女人 | 国内精品一区二区 | 草草影院浮力 | 可以在线观看的黄色 | 国产一区二区观看 | 一级黄网 | 国产免费网址 | 久久久久久久久久久免费 | 精品视频在线免费 | chinese中国真实乱对白 | 免费一区 | 99精品国产高清一区二区麻豆 | 精品在线不卡 | 天堂精品一区二区三区 | 亚洲女人天堂网 | 精品一区二区三区三区 | 久久国产精品久久 |