日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

【題目】若存在實常數k和b,使得函數F(x)和G(x)對其公共定義域上的任意實數x都滿足:F(x)≥kx+b和G(x)≤kx+b恒成立,則稱此直線y=kx+b為F(x)和G(x)的“隔離直線”,已知函數f(x)=x2(x∈R),g(x)= (x<0),h(x)=2elnx,有下列命題:
①F(x)=f(x)﹣g(x)在 內單調遞增;
②f(x)和g(x)之間存在“隔離直線”,且b的最小值為﹣4;
③f(x)和g(x)之間存在“隔離直線”,且k的取值范圍是(﹣4,0];
④f(x)和h(x)之間存在唯一的“隔離直線”y=2 x﹣e.
其中真命題的個數為(請填所有正確命題的序號)

【答案】①②④
【解析】解:①∵F(x)=f(x)﹣g(x)=x2 ,∴x∈(﹣ ,0),F′(x)=2x+ >0,∴F(x)=f(x)﹣g(x)在x∈(﹣ ,0)內單調遞增,故①對;
②、③設f(x)、g(x)的隔離直線為y=kx+b,則x2≥kx+b對一切實數x成立,即有△1≤0,k2+4b≤0,
≤kx+b對一切x<0成立,則kx2+bx﹣1≤0,即△2≤0,b2+4k≤0,k≤0,b≤0,
即有k2≤﹣4b且b2≤﹣4k,k4≤16b2≤﹣64k﹣4≤k≤0,同理﹣4≤b≤0,故②對,③錯;
④函數f(x)和h(x)的圖象在x= 處有公共點,因此存在f(x)和g(x)的隔離直線,
那么該直線過這個公共點,設隔離直線的斜率為k.則隔離直線方程為y﹣e=k(x﹣ ),即y=kx﹣k +e,
由f(x)≥kx﹣k +e(x∈R),可得x2﹣kx+k ﹣e≥0當x∈R恒成立,
則△≤0,只有k=2 ,此時直線方程為:y=2 x﹣e,
下面證明h(x)≤2 x﹣e,令G(x)=2 x﹣e﹣h(x)=2 x﹣e﹣2elnx,
G′(x)=
當x= 時,G′(x)=0,當0<x< 時,G′(x)<0,當x> 時,G′(x)>0,
則當x= 時,G(x)取到極小值,極小值是0,也是最小值.
所以G(x)=2 x﹣e﹣g(x)≥0,則g(x)≤2 x﹣e當x>0時恒成立.
∴函數f(x)和g(x)存在唯一的隔離直線y=2 x﹣e,故④正確.
所以答案是:①②④.
【考點精析】本題主要考查了命題的真假斷與應用的相關知識點,需要掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關系才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數

,求函數的單調區間;

若函數的圖象在點處的切線的傾斜角為,對于任意的,函數在區間上總不是單調函數,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}是各項均為正數的等差數列,其中a1=1,且a2、a4、a6+2成等比數列;數列{bn}的前n項和為Sn , 滿足2Sn+bn=1
(1)求數列{an}、{bn}的通項公式;
(2)如果cn=anbn , 設數列{cn}的前n項和為Tn , 求證:Tn<Sn+

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知全集U=R,A={y|y=2x+1},B={x|lnx<0},則(UA)∩B=(
A.?
B.{x| <x≤1}
C.{x|x<1}
D.{x|0<x<1}

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)=sin(2014x+ )+cos(2014x﹣ )的最大值為A,若存在實數x1 , x2 , 使得對任意實數x總有f(x1)≤f(x)≤f(x2)成立,則A|x1﹣x2|的最小值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,直線PA⊥平面ABCD,AD∥BC,AB⊥AD,BC=2AB=2AD=4BE=4.
(I)求證:直線DE⊥平面PAC.
(Ⅱ)若直線PE與平面PAC所成的角的正弦值為 ,求二面角A﹣PC﹣D的平面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=lnx+
(1)若函數有兩個極值點,求實數a的取值范圍;
(2)對所有的a≥ ,m∈(0,1),n∈(1,+∞),求f(n)﹣f(m)的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)若對于恒成立,求實數的取值范圍

(2)若對于恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知二次函數f(x)ax2bxc的圖象與x軸有兩個不同的交點,若f(c)00<x<c時,f(x)>0

(1)證明:f(x)0的一個根;

(2)試比較c的大小;

(3)證明:-2<b<1.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 91高清在线 | 亚洲天天干 | 久久综合久久受 | 欧美99| 国产精品欧美三级在线观看 | 午夜激情福利视频 | 国产高清精品在线 | 日韩精品一区二区三区免费视频 | 久久国| 欧美在线观看黄 | 欧美性影院 | 国产精品日产欧美久久久久 | 亚洲国产精品人人爽夜夜爽 | 成人片在线播放 | 成人精品一区二区三区中文字幕 | 欧美a级成人淫片免费看 | 国产精品久久久久国产a级 一区二区三区在线 | 成人自拍视频 | 日韩欧美不卡 | 一级日韩片 | 精东粉嫩av免费一区二区三区 | 在线日韩视频 | 999国内精品永久免费视频 | 91在线一区| 嫩草研究院在线观看入口 | 日韩中文字幕av | 噜噜噜天天躁狠狠躁夜夜精品 | 国产精品久久久久久久粉嫩 | 99re久久 | 色欧美色| 精品国产一区二区三区久久久蜜臀 | 精品国产乱码简爱久久久久久 | 9999国产精品 | 亚洲国产日韩欧美 | 五月婷婷亚洲 | 中国香蕉视频 | 欧美日韩精品一区二区三区在线观看 | 伊人久久一区二区三区 | 日干夜干天天干 | 亚洲一区二区三区精品视频 | 国产一区在线看 |