日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
如圖所示,已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面ABCD,且PA=1.
(I)問當實數a在什么范圍時,BC邊上能存在點Q,使得PQ⊥QD?
(II)當BC邊上有且僅有一個點Q使得PQ⊥OD時,求二面角Q-PD-A的余弦值大小.

【答案】分析:(I)連接AQ,由已知中PA⊥平面ABCD,四邊形ABCD為矩形,我們易得PQ⊥QD?AQ⊥QD,由此我們易得以AD為半徑的圓與BC應該有交點,再由AB=1,BC=a,即可得到滿足條件的實數a的取值范圍;
(II)取AD的中點M,過M作MN⊥PD,垂足為N,連接QM,QN,根據三垂線定理,我們易判斷出∠QNM為二面角Q-PD-A的平面角,解三角形QMN,即可得到二面角Q-PD-A的余弦值大小.
解答:解:(I)連接AQ,∵PA⊥平面ABCD,
∴PA⊥QD,若PQ⊥QD成立,
即AQ⊥QD成立
∴點Q應為BC與以AB為直徑的圓的公共點

故滿足條件的實數a的取值范圍為a≥2;
(II)由已知可得,當a=2時,BC上有且僅有一點滿足題意,
此時Q點為BC的中點,
取AD的中點M,過M作MN⊥PD,垂足為N,連接QM,QN
由于QN⊥平面PAD,
∴∠QNM為二面角Q-PD-A的平面角
∵MD=1,PD=,且△DNM∽△DAP
∴MN=
從而在直角△QNM中,QN=
∴cos∠QNM==
點評:本題考查的知識點是直線與平面垂直的性質,二面角大小的求法,(I)的關鍵是將AQ⊥QD轉化為BC與以AB為直徑的圓的公共點;(II)的關鍵是求出二面角Q-PD-A的平面角.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖所示精英家教網,已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面ABCD,且PA=1.
(I)問當實數a在什么范圍時,BC邊上能存在點Q,使得PQ⊥QD?
(II)當BC邊上有且僅有一個點Q使得PQ⊥OD時,求二面角Q-PD-A的余弦值大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖所示,已知在矩形ABCD中,
AD
=4
3
,設
AB
=a,
BC
=b,
BD
=c
,試求|
a
+
b
+
c
|.

查看答案和解析>>

科目:高中數學 來源:2014屆吉林省高二4月月考理科數學試卷(解析版) 題型:解答題

如圖所示,已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面AC,且PA=1.

(1)試建立適當的坐標系,并寫出點P、B、D的坐標;

(2)問當實數a在什么范圍時,BC邊上能存在點Q,使得PQ⊥QD?

(3)當BC邊上有且僅有一個點Q使得PQ⊥QD時,求二面角Q-PD-A的大小.

 

查看答案和解析>>

科目:高中數學 來源:2010-2011學年海南省國興中學、海師附中、嘉積中學、三亞一中高三聯考數學試卷(理科)(解析版) 題型:解答題

如圖所示,已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面ABCD,且PA=1.
(I)問當實數a在什么范圍時,BC邊上能存在點Q,使得PQ⊥QD?
(II)當BC邊上有且僅有一個點Q使得PQ⊥OD時,求二面角Q-PD-A的余弦值大小.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 操人网址| 怡红院免费在线视频 | 午夜久久视频 | 97成人超碰| 日本精品在线播放 | 极品少妇一区二区三区精品视频 | 操操日 | 国产视频三区 | 欧美在线a | 伊人影院久久 | 一级片国产 | 日本欧美中文字幕 | 在线视频 亚洲 | 精品www | 欧美国产免费 | 日韩欧美一区二区三区久久婷婷 | www.久久久久久久久久久久 | 亚洲色中色| 国产精品一区二区三区久久 | 91麻豆精品一二三区在线 | 国产传媒日韩欧美 | 亚洲午夜视频 | 久久99精品久久久久久国产越南 | 无码日韩精品一区二区免费 | 日操| 蜜桃一本色道久久综合亚洲精品冫 | 日韩久久久久久久 | 日韩一区二区在线观看 | 天天射射天天 | 日韩av在线影院 | 欧美爆操| 老司机午夜免费精品视频 | 久操综合| 国产精品一区二区久久精品爱微奶 | 黄色小视频在线观看 | 欧美一区二区三区在线看 | www.一区二区三区 | 亚洲天堂av中文字幕 | 看片国产 | 午夜精品久久久久久久久久久久久 | 一区二区日韩精品 |