日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知向量
a
=(sinx,0),
b
=(cosx,1),其中 0<x<
3
,求|
1
2
a
-
3
2
b
|的取值范圍.
分析:由已知中向量
a
=(sinx,0),
b
=(cosx,1),其中 0<x<
3
,我們易根據向量數量積的坐標公式,求出|
1
2
a
-
3
2
b
|的表達式,利用降冪公式,我們將將其化為正弦型函數的形式,根據正弦型函數的性質,得到|
1
2
a
-
3
2
b
|的取值范圍.
解答:解:∵向量
a
=(sinx,0),
b
=(cosx,1),
∴|
1
2
a
-
3
2
b
|2=|(
3
2
cosx-
1
2
sinx,
3
2
)|2(2分)
=(
3
2
cosx-
1
2
sinx)2+
3
4
(3分)
=sin2(x-
π
3
)+
3
4
.(3分)
0<x<
3
,∴-
π
3
<x-
π
3
π
3
,(2分)
∴0≤sin2(C-
π
3
)<
3
4
,(2分)
得|
1
2
a
-
3
2
b
|∈[
3
2
6
2
).(2分)
點評:本題考查的知識點是平面向量數量積的坐標表示、模、夾角,其中根據向量數量積的坐標公式,求出|
1
2
a
-
3
2
b
|的表達式,并化簡表達式,是解答本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知向量
a
=(sinθ,-2),
b
=(cosθ,1)
(1)若
a
b
,求tanθ;
(2)當θ∈[-
π
12
π
3
]時,求f(θ)=
a
b
-2|
a
+
b
|2的最值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(sinθ,1),
b
=(1,-cosθ),θ∈(0,π)
(Ⅰ)若
a
b
,求θ;
(Ⅱ)若
a
b
=
1
5
,求tan(2θ+
π
4
)
的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(sinθ,cosθ),
b
=(2,1),滿足
a
b
,其中θ∈(0,
π
2
)

(I)求tanθ值;
(Ⅱ)求
2
sin(θ+
π
4
)(sinθ+2cosθ)
cos2θ
的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(sinθ,cosθ)與
b
=(
3
,1),其中θ∈(0,
π
2

(1)若
a
b
,求sinθ和cosθ的值;
(2)若f(θ)=(
a
b
)
2
,求f(θ)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(sinθ,
3
cosθ),
b
=(1,1).
(1)若
a
b
,求tanθ的值;
(2)若|
a
|=|
b
|,且0<θ<π,求角θ的大小.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日本亚洲精品一区二区三区 | 午夜日韩 | 欧美性猛交一区二区三区精品 | 黄色片com | 中文字幕欧美在线观看 | 国产99久久精品 | 国产精品观看 | 国产一区二区在线免费观看 | 欧美一区久久 | 亚洲国产aⅴ成人精品无吗 亚洲h | 久久精品久 | 国内成人精品2018免费看 | av大全在线 | 欧洲亚洲一区二区三区 | 欧美一级精品片在线看 | 国产成人免费在线观看 | 中文字幕成人 | 一区二区三区视频免费在线观看 | 国产一区二区三区91 | 国产精品一区自拍 | 青青青国产精品一区二区 | 中文字幕在线观看第一页 | 久久国产久 | 亚洲视频一区二区三区 | 9999久久久久 | 国产乱码精品一区二区三区忘忧草 | 久久99精品久久久水蜜桃 | 久久青青| 欧美日韩精品 | 欧美日韩精品一区 | 黄色成人在线 | 91在线成人| 午夜精品久久久久久久久 | 精品久久国产 | 成人精品视频 | 福利二区 | 国产高清不卡一区二区三区 | 天天插天天干 | 日韩在线播放欧美字幕 | 精品久久久久久久 | 久久久久久久伦理 |