【題目】已知,
,點
.
(1)求當時,點
滿足
的概率;
(2)求當時,點
滿足
的概率
【答案】(1)滿足,
的點
所在的區域是以原點為中心,以坐標軸為對稱軸,邊長為4的正方形及其內部;滿足
的點所在的區域是以
為圓心,以2為半徑的圓及其內部,
由幾何概型的概率計算公式
;……6分
(2)滿足題意的有(-2,-2),(-2,-1),(-2,0),(-2,1),(-2,2),(-1,-2),(-1, -1),(-1,0),(-1,1),(-1,2),(0,-2),(0,-1),(0,0),(0,1),(0,2),(1,-2),(1,-1),(1,0),(1,1),(1,2),(2,-2),(2,-1),(2,0),(2,1),(2,2),計25個,其中(0,2),(1,2),(2,2),(2,0),(2,1),(1,1),滿足且
,
.
【解析】略
科目:高中數學 來源: 題型:
【題目】如圖,點E為正方形ABCD邊CD上異于點C,D的動點,將△ADE沿AE翻折成△SAE,使得平面SAE⊥平面ABCE,則下列說法中正確的有( )
①存在點E使得直線SA⊥平面SBC;
②平面SBC內存在直線與SA平行
③平面ABCE內存在直線與平面SAE平行;
④存在點E使得SE⊥BA.
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業共有20條生產線,由于受生產能力和技術水平等因素的影響,會產生一定量的次品.根據經驗知道,每臺機器產生的次品數萬件與每臺機器的日產量
萬件
之間滿足關系:
.已知每生產1萬件合格的產品可以以盈利3萬元,但每生產1萬件次品將虧損1萬元.
(Ⅰ)試將該企業每天生產這種產品所獲得的利潤表示為
的函數;
(Ⅱ)當每臺機器的日產量為多少時,該企業的利潤最大,最大為多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,曲線
的參數方程為
(
為參數,
),在以坐標原點為極點,
軸正半軸為極軸的極坐標系中,曲線
.
(1)求曲線的普通方程,并將
的方程化為極坐標方程;
(2)直線的極坐標方程為
,其中
滿足
,若曲線
與
的公共點都在
上,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,
,動點
滿足
(
且
).
(1)求動點的軌跡方程,并說明軌跡是什么曲線;
(2)若,點
為動點
的軌跡曲線上的任意一點,過點
作圓:
的切線,切點為
.試探究平面內是否存在定點
,使
為定值,若存在,請求出點
的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在一次籃球定點投籃訓練中,規定每人最多投3次.在處每投進一球得3分;在
處每投進一球得2分.如果前兩次得分之和超過3分就停止投籃;否則投第三次. 某同學在
處的投中率
,在
處的投中率為
.該同學選擇先在
處投一球,以后都在
處投,且每次投籃都互不影響.用
表示
該同學投籃訓練結束后所得的總分,其分布列為:
0 | 2 | 3 | 4 | 5 | |
0.03 |
(1)求的值;
(2)求隨機變量的數學期望
;
(3)試比較該同學選擇上述方式投籃得分超過3分與選擇都在處投籃得分超過3分的概率的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市為增強市民的環境保護意識, 面向全市征召義務宣傳志愿者,現從符合條件的志愿者中隨機抽取名按年齡分組: 第
組
,第2 組
,第
組
,第
組
,第
組
,得到的頻率分布直方圖如圖所示,
(1)若從第組中用分層抽樣的方法抽取
名志愿者參與廣場的宣傳活動, 應從第
組各抽取多少名志愿者?
(2)在(1)的條件下, 該縣決定在這名志愿者中隨機抽取
名志愿者介紹宣傳經驗, 求第
組至少有—名志愿者被抽中的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知四棱錐P-ABCD的底面是邊長為1的正方形,且側棱PC⊥底面ABCD,且PC=2,E是側棱PC上的動點
(1)求四棱錐P-ABCD的體積;
(2)證明:BD⊥AE。
(3)求二面角P-BD-C的正切值。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com