日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=xlnx.
(I)求函數f(x)的單調遞減區間;
(II)若f(x)≥-x2+ax-6在(0,+∞)上恒成立,求實數a的取值范圍;
(III)過點A(-e-2,0)作函數y=f(x)圖象的切線,求切線方程.
分析:(Ⅰ)由f′(x)=lnx+1,知f′(x)<0得lnx<-1,由此能求出函數f(x)的單調遞減區間.
(Ⅱ)由f(x)≥-x2+ax-6,得a≤lnx+x+
6
x
,設g(x)=lnx+x+
6
x
,則g′(x)=
x2+x-6
x2
=
(x+3)(x-2)
x2
,由此能求出g(x)最小值g(2)=5+ln2,從而能求出實數a的取值范圍.
(Ⅲ)設切點T(x0,y0)則kAT=f′(x0),故
x0lnx0
x0+
1
e2
=lnx0+1
,由此能求出切線方程.
解答:解:(Ⅰ)∵f′(x)=lnx+1
∴f′(x)<0得lnx<-1 (2分)
0<x<
1
e

∴函數f(x)的單調遞減區間是(0,
1
e
)
; (4分)
(Ⅱ)∵f(x)≥-x2+ax-6即a≤lnx+x+
6
x

g(x)=lnx+x+
6
x

g′(x)=
x2+x-6
x2
=
(x+3)(x-2)
x2
 (7分)
當x∈(0,2)時g′(x)<0,函數g(x)單調遞減;
當x∈(2,+∞)時g′(x)>0,函數g(x)單調遞增;
∴g(x)最小值g(2)=5+ln2,
∴實數a的取值范圍是(-∞,5+ln2]; (10分)
(Ⅲ)設切點T(x0,y0)則kAT=f′(x0),
x0lnx0
x0+
1
e2
=lnx0+1
即e2x0+lnx0+1=0
設h(x)=e2x+lnx+1,當x>0時h′(x)>0,
∴h(x)是單調遞增函數 (13分)
∴h(x)=0最多只有一個根,
h(
1
e2
)=e2×
1
e2
+ln
1
e2
+1=0

x0=
1
e2

由f'(x0)=-1得切線方程是x+y+
1
e2
=0
. (16分)
點評:本題考查利用導數求閉區間上函數的最值的靈活運用,考查化歸與轉化、分類與整合的數學思想,培養學生的抽象概括能力、推理論證能力、運算求解能力和創新意識.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網已知函數f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•深圳一模)已知函數f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數,且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•上海模擬)已知函數f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數學 來源:上海模擬 題型:解答題

已知函數f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數學 來源:深圳一模 題型:解答題

已知函數f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數,且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數t的取值范圍.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日韩综合一区 | 青草免费视频 | 国产精品色综合 | 一级毛片在线播放 | 久久在线视频 | 一区二区久久 | 亚洲成人免费视频在线观看 | 国产精品久久久久影院色老大 | 一级黄色片子免费看 | 一级欧美| www.91av在线 | 黄色av免费观看 | 久久毛片| 午夜成人免费影院 | 精品一区二区三区三区 | 国产精品中文字幕在线观看 | 开心激情网站 | 亚洲久久 | www精品美女久久久tv | 在线国产一区二区 | 性生生活大片免费看视频 | 久久久久9999亚洲精品 | 久热精品视频 | 欧美午夜视频 | 成人高清网站 | 91精品一区二区三区久久久久久 | www.日本视频 | 久久久亚洲成人 | 在线精品一区 | 亚洲精品无人区 | 欧美日韩精品一区二区 | 黄色三级网 | 啪啪免费小视频 | 视频一区久久 | 超碰97在线免费 | 国产一区二区三区久久久久久久 | 国内精品久久久久国产 | 91久久人人夜色一区二区 | 午夜香蕉视频 | 亚洲毛片在线观看 | 久久777|