【題目】某地區實施“光盤行動”以后,某自助啤酒吧也制定了自己的行動計劃,進店的每一位客人需預交元,啤酒根據需要自己用量杯量取,結賬時,根據每桌剩余酒量,按一定倍率收費(如下表),每桌剩余酒量不足
升的,按
升計算(如剩余
升,記為剩余
升).例如:結賬時,某桌剩余酒量恰好為
升,則該桌的每位客人還應付
元.統計表明飲酒量與人數有很強的線性相關關系,下面是隨機采集的
組數據
(其中
表示飲酒人數,
(升)表示飲酒量):
,
,
,
,
.
剩余酒量(單位:升) |
| ||||
結賬時的倍率 |
(1)求由這組數據得到的
關于
的回歸直線方程;
(2)小王約了位朋友坐在一桌飲酒,小王及朋友用量杯共量取了
升啤酒,這時,酒吧服務生對小王說,根據他的經驗,小王和朋友量取的啤酒可能喝不完,可以考慮再邀請
位或
位朋友一起來飲酒,會更劃算.試向小王是否該接受服務生的建議?
參考數據:回歸直線的方程是,其中
,
.
科目:高中數學 來源: 題型:
【題目】眾所周知的“太極圖”,其形狀如對稱的陰陽兩魚互抱在一起,因而也被稱為“陰陽魚太極圖”.如圖是放在平面直角坐標系中的“太極圖”,整個圖形是一個圓形,其中黑色陰影區域在軸右側部分的邊界為一個半圓.給出以下命題:①在太極圖中隨機取一點,此點取自黑色陰影部分的概率是
;②當
時,直線
與黑色陰影部分有公共點;③當
時,直線
與黑色陰影部分有兩個公共點.其中所有正確結論的序號是( )
A.①B.①②C.①③D.①②③
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,定義為兩點A
B
的“切比雪夫距離”,又設點P及
上任意一點Q,稱
的最小值為點P到直線
的“切比雪夫距離”,記作
,給出下列三個命題:
①對任意三點A、B、C,都有
②已知點P(2,1)和直線,則
③定點動點P
滿足
則點P的軌跡與直線
(
為常數)有且僅有2個公共點.
其中真命題的個數是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在三棱柱中,底面
是正三角形,側棱
底面
.D,E分別是邊BC,AC的中點,線段
與
交于點G,且
,
.
(1)求證:∥平面
;
(2)求證:⊥平面
;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面
為矩形,平面
平面
,
,
,
,
為
中點.
(Ⅰ)求證:∥平面
;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在棱上是否存在點
,使得
?若存在,求
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于集合,
,
,
.集合
中的元素個數記為
.規定:若集合
滿足
,則稱集合
具有性質
.
(I)已知集合,
,寫出
,
的值;
(II)已知集合,
為等比數列,
,且公比為
,證明:
具有性質
;
(III)已知均有性質
,且
,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以下四個命題:①設,則
是
的充要條件;②已知命題
、
、
滿足“
或
”真,“
或
”也真,則“
或
”假;③若
,則使得
恒成立的
的取值范圍為{
或
};④將邊長為
的正方形
沿對角線
折起,使得
,則三棱錐
的體積為
.其中真命題的序號為________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C:(x﹣a)2+(y﹣2)2=4(a>0)及直線l:x﹣y+3=0.當直線l被圓C截得的弦長為時,求
(Ⅰ)a的值;
(Ⅱ)求過點(3,5)并與圓C相切的切線方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,某隧道設計為雙向四車道,車道總寬22米,要求通行車輛限高4.5米,隧道全長2.5千米,隧道的拱線近似地看成半個橢圓形狀.
(1)若最大拱高h為6米,則隧道設計的拱寬l是多少?
(2)若最大拱高h不小于6米,則應如何設計拱高h和拱寬l,才能使半個橢圓形隧道的土方工程量最最小?(半個橢圓的面積公式為,柱體體積為:底面積乘以高.本題結果精確到0.1米)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com