日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

6.將函數(shù)f(x)=$\sqrt{3}$sin2x-cos2x的圖象向左平移φ(0<φ<$\frac{π}{2}$)個單位長度后得到函數(shù)y=g(x)的圖象,若g(x)≤|g($\frac{π}{6}$)|對x∈R恒成立,則函數(shù)y=g(x)的單調(diào)遞減區(qū)間是(  )
A.[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$](k∈Z)B.[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z)
C.[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$](k∈Z)D.[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$](k∈Z)

分析 首先通過三角函數(shù)的恒等變換,變換成正弦型函數(shù),進一步利用平移變換,最后根據(jù)正弦型函數(shù)的單調(diào)性求得結(jié)果.

解答 解:f(x)=$\sqrt{3}$sin2x-cos2x=2sin(2x-$\frac{π}{6}$)的圖象向左平移φ(0<φ<$\frac{π}{2}$)個單位,得到
g(x)=2sin(2x+2φ-$\frac{π}{6}$).
∵g(x)≤|g($\frac{π}{6}$)|對x∈R恒成立,
∴g($\frac{π}{6}$)=±1,即2sin(2×$\frac{π}{6}$+2φ-$\frac{π}{6}$)=±1,
∴φ=kπ+$\frac{π}{6}$,(k∈Z)
∵0<φ<$\frac{π}{2}$,
∴φ=$\frac{π}{6}$,
∴g(x)=2sin(2x+$\frac{π}{6}$).
令2x+$\frac{π}{6}$∈[2kπ+$\frac{π}{2}$,2kπ+π],(k∈Z)
則x∈[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$](k∈Z)
故選:C.

點評 本題考查的知識要點:三角函數(shù)的恒等變換,函數(shù)圖象的平移變換問題,及函數(shù)單調(diào)區(qū)間問題,屬于基礎(chǔ)題型.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

16.經(jīng)過拋物線y=4x2的焦點作直線l交該拋物線于A(x1,y1),B(x2,y2)兩點,若y1+y2=2,則線段AB的長等于$\frac{17}{8}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知函數(shù)$f(x)=\left\{\begin{array}{l}|{x+1}|\;,\;\;x≤-1\\ 2x\;,\;\;-1<x<2\\ x-1\;,\;\;x≥2\end{array}\right.$,則f[f(-2)]=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.直線y=5與y=-1在區(qū)間$[{0\;,\;\;\frac{4π}{ω}}]$上截曲線$y=msin\frac{ω}{2}x+n({m>0\;,\;\;n>0})$所得弦長相等且不為零,則下列描述正確的是(  )
A.$m≤\frac{3}{2}\;,\;\;n=\frac{5}{2}$B.m≤3,n=2C.$m>\frac{3}{2}$D.m>3,n=2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知x,y滿足$\left\{\begin{array}{l}{x-y≥0}\\{x+y-4≥0}\\{x≤4}\end{array}\right.$,則z=4x+y的最小值為10.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知a=${4}^{\frac{1}{2}}$,b=${2}^{\frac{1}{3}}$,c=${5}^{\frac{1}{2}}$,則a、b、c的大小關(guān)系為(  )
A.b<a<cB.a<b<cC.b<c<aD.c<a<b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知在數(shù)列{an}中,a1=1,an+1=2an+n-1,n∈N*
(1)證明:數(shù)列{an+n}是等比數(shù)列;
(2)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖,已知平面BCC1B1是圓柱的軸截面(經(jīng)過圓柱的軸截面)BC是圓柱底面的直徑,O為底面圓心,E為母線CC1的中點,已知AB=AC=AA1=4
(1)求證:B1O⊥平面AEO
(2)求二面角B1-AE-O的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.若x,y滿足約束條件$\left\{\begin{array}{l}{x+y≥1}\\{x-y≥-1}\\{3x-y≤a}\end{array}\right.$,目標函數(shù)z=x+2y的最小值為1,則實數(shù)a的值為3.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 欧美精品一区二区在线观看 | 精品视频在线观看 | 一区二区三区在线播放 | 91在线精品一区二区 | 久久综合99re88久久爱 | 成人网在线视频 | 久久精品国产一区二区电影 | 国产欧美日韩在线观看 | 久久亚洲一区二区三区四区 | 亚洲精品99 | 青青久在线视频免费观看 | 一本色道久久综合狠狠躁篇的优点 | 综合网视频 | 中文字幕免费在线 | 亚洲毛片在线观看 | 日韩国产综合 | 国产一区二区三区四区五区加勒比 | www.免费黄色 | 久久精品网 | 中文字幕在线观看 | 在线观看免费av的网址 | 一级黄色片a级 | 中文字幕巨乳 | 日韩三级| 在线观看日韩av | 黄色欧美视频 | 中文字幕不卡av | 中文字幕一区二区三区四区 | 中文在线一区 | av一二三区| 国产精品久久久久久久久久久久久 | 九九综合九九 | 国产精品极品美女在线观看免费 | 日韩精品久久久久久 | 亚洲免费在线视频 | 日本三级在线观看中文字 | 久久久婷婷 | 午夜资源 | 亚洲欧美日韩精品 | 久久r免费视频 | 欧美在线视频一区二区 |