【題目】某農戶準備建一個水平放置的直四棱柱形儲水器(如圖),其中直四棱柱的高,兩底面
是高為
,面積為
的等腰梯形,且
,若儲水窖頂蓋每平方米的造價為100元,側面每平方米的造價為400元,底部每平方米的造價為500元.
(1)試將儲水窖的造價表示為
的函數;
(2)該農戶如何設計儲水窖,才能使得儲水窖的造價最低,最低造價是多少元?(取).
科目:高中數學 來源: 題型:
【題目】為了得到函數y=sin(x+ )的圖象,只需把y=sinx圖象上所有的點( )
A.向左平移 個單位
B.向右平移 個單位
C.向左平移 個單位
D.向右平移 個單位
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠為了對新研發的一種產品進行合理定價,隨機抽取了6個試銷售數據,得到第i個銷售單價xi(單位:元)與銷售yi(單位:件)的數據資料,算得
(1)求回歸直線方程 ;
(2)預計在今后的銷售中,銷量與單價仍然服從(1)中的關系,且該產品的成本是4元/件,為使工廠獲得最大利潤,該產品的單價應定為多少元?(利潤=銷售收入﹣成本) 附:回歸直線方程 中,
=
,
=
﹣
,其中
,
是樣本平均值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線x2﹣2y2=2的左、右兩個焦點為F1、F2 , 動點P滿足|PF1|+|PF2|=4.
(1)求動點P的軌跡E的方程;
(2)設過F2且不垂直于坐標軸的動直線l交軌跡E于A,B兩點,問:線段OF2上是否存在一點D,使得以DA,DB為鄰邊的平行四邊形為菱形?作出判斷并證明.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和為Sn , 通項公式為 .
(1)計算f(1),f(2),f(3)的值;
(2)比較f(n)與1的大小,并用數學歸納法證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C1: (a>b>0)的離心率為
,且過點(1,
).
(1)求C1的方程;
(2)設直線l同時與橢圓C1和拋物線C2:y2=4x相切,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數y=f(x)對任意的x∈(﹣ ,
)滿足f′(x)cosx+f(x)sinx>0(其中f′(x)是函數f(x)的導函數),則下列不等式成立的是( )
A. f(﹣
)<f(﹣
)
B. f(
)<f(
)??
C.f(0)>2f( )
D.f(0)> f(
)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com