【題目】設(shè)函數(shù)f(x)=|x+ |+|x﹣a+1|(a>0是常數(shù)).
(Ⅰ)證明:f(x)≥1;
(Ⅱ)若f(3)< ,求a的取值范圍.
【答案】解:(Ⅰ)函數(shù)f(x)=|x+ |+|x﹣a+1|≥|
|=|
|
∵a>0,
∴ ,當且僅當a=1時取等號.
∴ ≥1
故得:函數(shù)f(x)=| |≥1,即f(x)≥1;
(Ⅱ)當x=3時,可得f(3)=|3+ |+|3﹣a+1|
,
∵a>0,
可得:3+ +|4﹣a|
|4﹣a|< ,
∴ ,且
,
解得:
故得a的取值范圍是(2, ).
【解析】(Ⅰ)利用絕對值不等式證明即可.(Ⅱ)將x=3帶入,可得f(3)=|3+ |+|3﹣a+1|
,去絕對值,即可得答案.
【考點精析】關(guān)于本題考查的絕對值不等式的解法,需要了解含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對值的符號才能得出正確答案.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知事件“在矩形ABCD的邊CD上隨機取一點P,使△APB的最大邊是AB”發(fā)生的概率為 ,則
=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一組數(shù)據(jù)a、b、9、10、11的平均數(shù)為10,方差為2,則|a﹣b|=( )
A.2
B.4
C.8
D.12
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,設(shè)命題
:指數(shù)函數(shù)
≠
在
上單調(diào)遞增.命題
:函數(shù)
的定義域為
.若“
”為假,“
”為真,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點分別是Δ
的邊
的中點,連接
.現(xiàn)將
沿
折疊至Δ
的位置,連接
.記平面
與平面
的交線為
,二面角
大小為
.
(1)證明:
(2)證明:
(3)求平面與平面
所成銳二面角大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下四個命題中,正確命題的個數(shù)是( )
①命題“若x=y,則sinx=siny”的逆否命題是真命題;
②已知α,β是不同的平面,m,n是不同的直線,m∥α,n∥β,α⊥β,則m⊥n;
③直線l1:2ax+y+1=0,l2:x+2ay+2=0,l1∥l2的充要條件是 ;
④ .
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四邊形AMNC為等腰梯形,△ABC為直角三角形,平面AMNC與平面ABC垂直,AB=BC,AM=CN,點O、D、E分別是AC、MN、AB的中點.過點E作平行于平面AMNC的截面分別交BD、BC于點F、G,H是FG的中點.
(Ⅰ)證明:OB⊥EH;
(Ⅱ)若直線BH與平面EFG所成的角的正弦值為 ,求二面角D﹣AC﹣H的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,
平面
.
,
,
,
,
分別為
和
的中點,
為側(cè)棱
上的動點.
()求證:平面
平面
.
()若
為線段
的中點,求證:
平面
.
()試判斷直線
與平面
是否能夠垂直.若能垂直,求
的值,若不能垂直,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com