【題目】如圖已知橢圓C: +y2=1,以橢圓的左頂點T為圓心作圓T:(x+2)2+y2=r2(r>0).設圓T與橢圓C交于點M與點N.
(1)求 的最小值;
(2)設點P是橢圓C上異于M,N的任意一點,且直線MP,NP分別與x軸交于點R,S,O為坐標原點,求證:丨OR丨丨OS丨為定值.
【答案】
(1)解:依題意,得a=2,b=1,c= =
,T(﹣2,0).
點M與點N關于x軸對稱,
設M(x1,y1),N(x1,﹣y1),不妨設y1>0.
由于點M在橢圓C上,∴ =1﹣
,(*)
=(x1+2,y1),
=(x1+2,﹣y1),
∴ =(x1+2)2﹣
= =
﹣
,
由于﹣2<x1<2,
故當 時,
取得最小值為﹣
(2)證明:設P(x0,y0),
則直線MP的方程為:y﹣y0= (x﹣x0),
令y=0,得xR= ,
同理:xS= ,
故xRxS= ,(**)
又點M與點P在橢圓上,故 ,
=4
,
代入(**)式,得:xRxS= =
=4.
∴丨OR丨丨OS丨=|xRxS|=4為定值
【解析】(1)T(﹣2,0).點M與點N關于x軸對稱,設M(x11),N(x1 , ﹣y1),不妨設y1>0.由于點M在橢圓C上, =1﹣
,可得
=
﹣
,由于﹣2<x1<2,可得
取得最小值.(2)設P(x0 , y0),則直線MP的方程為:y﹣y0=
(x﹣x0),令y=0,得xR=
,同理:xS=
,xRxS=
,又點M與點P在橢圓上,故
,
=4
,代入丨OR丨丨OS丨=|xRxS|,化簡即可證明.
科目:高中數學 來源: 題型:
【題目】已知橢圓:
(
)的左焦點為
,左準線方程為
.
(1)求橢圓的標準方程;
(2)已知直線交橢圓
于
,
兩點.
①若直線經過橢圓
的左焦點
,交
軸于點
,且滿足
,
.求證:
為定值;
②若(
為原點),求
面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】判斷下列命題是全稱命題還是存在性命題,并判斷其真假:
(1)對任意x∈R,zx>0(z>0);
(2)對任意非零實數x1,x2,若x1<x2,則;
(3)α∈R,使得sin(α+)=sin α;
(4)x∈R,使得x2+1=0.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,AD∥BC,AB⊥AD,AB⊥PA,BC=2AB=2AD=4BE,平面PAB⊥平面ABCD,
(Ⅰ)求證:平面PED⊥平面PAC;
(Ⅱ)若直線PE與平面PAC所成的角的正弦值為 ,求二面角A﹣PC﹣D的平面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設點到坐標原點的距離和它到直線
的距離之比是一個常數
.
(1)求點的軌跡;
(2)若時得到的曲線是
,將曲線
向左平移一個單位長度后得到曲線
,過點
的直線
與曲線
交于不同的兩點
,過
的直線
分別交曲線
于點
,設
,
,
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集為{x|﹣2≤x≤1}. (Ⅰ)求a的值;
(Ⅱ)若f(x)﹣2f( )≤k恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(xt)=xt2+bxt .
(1)若b=2,且xt=log2t,t∈[ ,2],求f(xt)的最大值;
(2)當y=f(xt)與y=f(f(xt))有相同的值域時,求b的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于無窮數列,記
,若數列
滿足:“存在
,使得只要
(
且
),必有
”,則稱數列
具有性質
.
(Ⅰ)若數列滿足
判斷數列
是否具有性質
?是否具有性質
?
(Ⅱ)求證:“是有限集”是“數列
具有性質
”的必要不充分條件;
(Ⅲ)已知是各項為正整數的數列,且
既具有性質
,又具有性質
,求證:存在整數
,使得
是等差數列.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com