已知函數f(x)=-x3+ax2-4(a∈R).
(1)若函數y=f(x)的圖象在點P(1,f(1))處的切線的傾斜角為,求f(x)在[-1,1]上的最小值;
(2)若存在x0∈(0,+∞),使f(x0)>0,求a的取值范圍.
科目:高中數學 來源: 題型:解答題
某建筑公司要在一塊寬大的矩形地面(如圖所示)上進行開發建設,陰影部分為一公共設施建設不能開發,且要求用欄柵隔開(欄柵要求在一直線上),公共設施邊界為曲線f(x)=1-ax2(a>0)的一部分,欄柵與矩形區域的邊界交于點M、N,交曲線于點P,設P(t,f(t)).
(1)將△OMN(O為坐標原點)的面積S表示成t的函數S(t);
(2)若在t=處,S(t)取得最小值,求此時a的值及S(t)的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
請你設計一個包裝盒,如圖所示,ABCD是邊長為60 cm的正方形硬紙片,切去陰影部分所示的四個全等的等腰直角三角形,再沿虛線折起,使得A,B,C,D四個點重合于圖中的點P,正好形成一個正四棱柱形狀的包裝盒,E,F在AB上,是被切去的一個等腰直角三角形,斜邊的兩個端點,設AE=FB=x(cm).
①某廣告商要求包裝盒的側面積S(cm2)最大,試問x應取何值?
②某廠商要求包裝盒的容積V(cm3)最大,試問x應取何值?并求出此時包裝盒的高與底面邊長的比值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數
(1)當時,求
的最小值;
(2)在區間(1,2)內任取兩個實數p,q,且p≠q,若不等式>1恒成立,求實數a的取值范圍;
(3)求證:(其中
)。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com