【題目】下列說法錯誤的是( )
A.“”是“
”的充分不必要條件
B.若為假命題,則
,
均為真命題
C.命題“若,則
”的逆否命題是“若
,則
|”
D.若命題,使得
,則
,恒有
科目:高中數學 來源: 題型:
【題目】如圖,在南北方向有一條公路,一半徑為100的圓形廣場(圓心為
)與此公路所在直線
相切于點
,點
為北半圓弧(弧
)上的一點,過點
作直線
的垂線,垂足為
,計劃在
內(圖中陰影部分)進行綠化,設
的面積為
(單位:
),
(1)設,將
表示為
的函數;
(2)確定點的位置,使綠化面積最大,并求出最大面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖(1),在平面五邊形中,已知四邊形
為正方形,
為正三角形.沿著
將四邊形
折起得到四棱錐
,使得平面
平面
,設
在線段
上且滿足
,
在線段
上且滿足
,
為
的重心,如圖(2).
(1)求證:平面
;
(2)求直線與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某城市的公交公司為了方便市民出行,科學規劃車輛投放,在一個人員密集流動地段增設一個起點站,為了研究車輛發車間隔時間與乘客等候人數
之間的關系,經過調查得到如下數據:
間隔時間/分 | 10 | 11 | 12 | 13 | 14 | 15 |
等候人數y/人 | 23 | 25 | 26 | 29 | 28 | 31 |
調查小組先從這組數據中選取
組數據求線性回歸方程,再用剩下的
組數據進行檢驗.檢驗方法如下:先用求得的線性回歸方程計算間隔時間對應的等候人數
,再求
與實際等候人數
的差,若差值的絕對值都不超過
,則稱所求方程是“恰當回歸方程”.
(1)從這組數據中隨機選取
組數據后,求剩下的
組數據的間隔時間不相鄰的概率;
(2)若選取的是后面組數據,求
關于
的線性回歸方程
,并判斷此方程是否是“恰當回歸方程”;
(3)為了使等候的乘客不超過人,試用(2)中方程估計間隔時間最多可以設置為多少(精確到整數)分鐘.
附:對于一組數據,
,……,
,其回歸直線
的斜率和截距的最小二乘估計分別為:
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面
是梯形,
,
,
是正三角形,
為
的中點,平面
平面
.
(1)求證:平面
;
(2)在棱上是否存在點
,使得二面角
的余弦值為
?若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,直線
的參數方程為
(
為參數),以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程是
.
(1)求曲線的直角坐標方程和直線
的普通方程;
(2)設點,
為曲線
上的動點,求
的面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線
的參數方程為:
(
為參數),以坐標原點為極點,
軸正半軸為極軸建立極坐標系,直線
的極坐標方程為:
.
(Ⅰ)求直線與曲線
公共點的極坐標;
(Ⅱ)設過點的直線
交曲線
于
,
兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四棱錐中,
平面
,
是正三角形,
與
的交點
恰好是
中點,又
,
.
(1)求證:;
(2)設為
的中點,點
在線段
上,若直線
平面
,求
的長;
(3)求二面角的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com