【題目】本著健康、低碳的生活理念,租自行車騎游的人越來越多.某自行車租車點的收費標準是每年每次租時間不超過兩小時免費,超過兩個小時的部分每小時收費2元(不足1小時的部分按1小時計算).現有甲、乙兩人獨立來該租車點租車騎游(各租一車一次).設甲、乙不超過兩小時還車的概率分別為,
;兩小時以上且不超過三小時還車的概率為
,
;兩人租車時間都不會超過四小時.
(1)求甲、乙都在三到四小時內還車的概率和甲、乙兩人所付租車費相同的概率;
(2)設甲、乙兩人所付的租車費用之和為隨機變量,求
的分布列與數學期望
.
科目:高中數學 來源: 題型:
【題目】已知單調遞增的等比數列{an}滿足:a2+a3+a4=28,且a3+2是a2 , a4的等差中項.
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)設bn=anlog an , 求數列{bn}的前n項和Sn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=cosωx(sinωx+ cosωx)(ω>0),如果存在實數x0 , 使得對任意的實數x,都有f(x0)≤f(x)≤f(x0+2016π)成立,則ω的最小值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列{an}的前n項和為Sn(n∈N*),a3=5,S10=100.
(1)求數列{an}的通項公式;
(2)設bn=2 +2n求數列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一組數據的平均數是2.8,方差是3.6,若將這組數據中的每一個數據都加上60,得到一組新數據,則所得新數據的平均數和方差分別是( )
A.57.2,3.6
B.57.2,56.4
C.62.8,63.6
D.62.8,3.6
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設是各項均不相等的數列,
為它的前
項和,滿足
.
(1)若,且
成等差數列,求
的值;
(2)若的各項均不相等,問當且僅當
為何值時,
成等差數列?試說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和Sn=3n2+8n,{bn}是等差數列,且an=bn+bn+1 .
(Ⅰ)求數列{bn}的通項公式;
(Ⅱ)令cn= ,求數列{cn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AB∥CD,∠BCD=90°,BC=CD=2,AB=4,EC∥FD,FD⊥底面ABCD,M是AB的中點.
(1)求證:平面CFM⊥平面BDF;
(2)若點N為線段CE的中點,EC=2,FD=3,求證:MN∥平面BEF.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com