定義在R上的函數y=f(x),f(0)≠0,當x>0時,f(x)>1,且對任意的a、b∈R,有f(a+b)=f(a)f(b),
(1)求證:f(0)=1;
(2)求證:對任意的x∈R,恒有f(x)> 0;
(3)證明:f(x)是R上的增函數;(4)若f(x)·f(2x-x2)>1,求x的取值范圍。
(1)略(2)略 (3) 0<x<3
【解析】本題主要考查抽象函數及其應用、函數單調性的判斷與證明.解本題的關鍵是靈活應用題目條件,尤其是(3)中“f(x2)=f[(x2-x1)+x1]”是證明單調性的關鍵,這里體現了向條件化歸的策略.
(1)利用賦值法解決,令x=y=0即得;
(2)利用條件:“當x>0時,f(x)>1”,只須證明當x<0時,f(x)>0即可;
(3)利用單調函數的定義證明,設x1<x2,將f(x2)寫成f[(x2-x1)+x1]的形式后展開,結合(2)的結論即可證得;
(4)由f(x)•f(2x-x2)>f(0)得f(3x-x2)>f(0).結合f(x)的單調性去掉符號“f”后,轉化成一元二次不等式解決即可
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
f(-x) | f(x) |
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com