日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

已知一直線l過點P(-3,4).

(1)若直線l在兩坐標軸上截距之和為12,求直線l的方程.

(2)若直線l與x軸負半軸、y軸正半軸分別交于A、B兩點,試求△OAB面積的最小值及此時直線l的方程.

答案:
解析:

  解:(1)設直線l的方程為y-4=k(x+3),令x=0,得y=3k+4.令y=0,得x=-3,由條件知(3k+4)+(-3)=12,整理得:3k2-11k-4=0,∴k=4或k=-

  ∴所求直線l的方程為4x-y+16=0或x+3y-9=0.

  (2)S=(3k+4)(+3)(k>0),整理得9k2-(2S-24)k+16=0①

  ∵k>0,∴解得S≥24.

  ∴Smin=24,代入①得:9k2-24k+16=0,∴k=

  ∴△OAB面積的最小值為24,此時直線l的方程為4x-3y+24=0.


提示:

學會利用直線的點斜式求截距以及判別式法求最值.


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
 (a>b>0)的左、右焦點分別為F1(-1,0)、F2(1,0),離心率為
3
3

(Ⅰ)求橢圓C的方程;
(Ⅱ)已知一直線l過橢圓C的右焦點F2,交橢圓于點A、B.
(ⅰ)若滿足
OA
OB
=
2
tan∠AOB
(O為坐標原點),求△AOB的面積;
(ⅱ)當直線l與兩坐標軸都不垂直時,在x軸上是否總存在一點P,使得直線PA、PB的傾斜角互為補角?若存在,求出P坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知一直線l過點為P(2,1),且與橢圓
x2
8
+
y2
4
=1
相交于A、B兩點.
(Ⅰ)若弦AB的中點為P,求直線l的方程;
(Ⅱ)求△AOB面積的最大值及面積最大時直線l的方程(O為坐標原點).

查看答案和解析>>

科目:高中數學 來源: 題型:

(2008•海珠區一模)已知拋物線D的頂點是橢圓
x2
4
+
y2
3
=1的中心,焦點與該橢圓的右焦點重合.
(1)求拋物線D的方程;
(2)已知動直線l過點P(4,0),交拋物線D于A、B兩點,坐標原點O為PQ中點,求證:∠AQP=∠BQP;
(3)是否存在垂直于x軸的直線m被以AP為直徑的圓所截得的弦長恒為定值?如果存在,求出m的方程;如果不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•茂名一模)已知橢圓C1
x2
a2
+
y2
b2
=1   (a>b>0)
過點A(0,
2
)
且它的離心率為
3
3

(1)求橢圓C1的方程;
(2)設橢圓C1的左焦點為F1,右焦點為F2,直線l1過點F1且垂直于橢圓的長軸,動直線l2垂直l1于點P,線段PF2的垂直平分線交l2于點M,求點M的軌跡C2的方程;
(3)已知動直線l過點Q(4,0),交軌跡C2于R、S兩點.是否存在垂直于x軸的直線m被以RQ為直徑的圓O1所截得的弦長恒為定值?如果存在,求出m的方程;如果不存在,說明理由.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 亚洲免费视频网站 | 在线不卡视频 | 在线国v免费看 | 999国内精品永久免费视频 | 久久亚洲一区二区三区四区 | 日韩欧美在线一区 | 成人免费高清视频 | 国产精自产拍久久久久久 | 97在线免费视频 | 天天插天天射天天干 | 黄色a在线 | 久久亚洲精品国产精品紫薇 | 国产精品久久久久影院 | 亚洲女同老女人女同志 | 久久毛片 | 日本不卡一区二区 | 国产偷录视频叫床高潮对白 | 久久综合久久久 | 欧美日本高清 | 免费观看一级特黄欧美大片 | 日韩国产在线 | 成年人福利 | 婷婷网址 | 精品一区二区在线播放 | 欧美理论视频 | 99久久久久国产精品免费 | 亚洲国产精品一区二区第一页 | 在线色网站 | 韩国av片在线观看 | 国产精品视频男人的天堂 | 久久色av| 黄色一级毛片 | 久久精品久久精品国产大片 | 久久久精品高清 | 日韩在线精品 | 久久久亚洲精品视频 | av男人的天堂网 | 91精品国产一区二区 | 日本免费不卡 | 18久久久久久 | 午夜免费看视频 |