已知函數(
),
.
(Ⅰ)若曲線與
在它們的交點
處具有公共切線,求
的值;
(Ⅱ)當時,求函數
在區間
上的最大值.
科目:高中數學 來源: 題型:解答題
某單位設計的兩種密封玻璃窗如圖所示:圖1是單層玻璃,厚度為8 mm;圖2是雙層中空玻璃,厚度均為4 mm,中間留有厚度為的空氣隔層.根據熱傳導知識,對于厚度為
的均勻介質,兩側的溫度差為
,單位時間內,在單位面積上通過的熱量
,其中
為熱傳導系數.假定單位時間內,在單位面積上通過每一層玻璃及空氣隔層的熱量相等.(注:玻璃的熱傳導系數為
,空氣的熱傳導系數為
.)
(1)設室內,室外溫度均分別為,
,內層玻璃外側溫度為
,外層玻璃內側溫度為
,且
.試分別求出單層玻璃和雙層中空玻璃單位時間內,在單位面積上通過的熱量(結果用
,
及
表示);
(2)為使雙層中空玻璃單位時間內,在單位面積上通過的熱量只有單層玻璃的4%,應如何設計的大小?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
為了在夏季降溫和冬季供暖時減少能源損耗,房屋的房頂和外墻需要建造隔熱層,某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元,該建筑物每年的能源消耗費用為C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關系:C(x)=(0
x
10),若不建隔熱層,每年能源消耗費用為8萬元。設f(x)為隔熱層建造費用與20年的能源消耗費用之和。
(1)求k的值及f(x)的表達式;
(2)隔熱層修建多厚時,總費用f(x)達到最小,并求最小值。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
作為紹興市2013年5.1勞動節系列活動之一的花卉展在鏡湖濕地公園舉行.現有一占地1800平方米的矩形地塊,中間三個矩形設計為花圃(如圖),種植有不同品種的觀賞花卉,周圍則均是寬為1米的賞花小徑,設花圃占地面積為平方米,矩形一邊的長為
米(如圖所示)
(1)試將表示為
的函數;
(2)問應該如何設計矩形地塊的邊長,使花圃占地面積取得最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
若二次函數f(x)=ax2+bx+c(a≠0)滿足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)若在區間[-1,1]上,不等式f(x)>2x+m恒成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某租賃公司擁有汽車100輛,當每輛車的月租金為3000元時,可全部租出。當每輛車的月租金每增加50元時,未租出的車將會增加一輛。租出的車每輛每月需要維護費150元,未租出的車每輛每月需要維護費50元。
(1)當每輛車的月租金定為3600元時,能租出多少輛車?
(2)當每輛車的月租金定為多少元時,租賃公司的月收益最大?最大月收益是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某工廠生產一種產品的原材料費為每件40元,若用x表示該廠生產這種產品的總件數,則電力與機器保養等費用為每件0.05x元,又該廠職工工資固定支出12500元。
(1)把每件產品的成本費P(x)(元)表示成產品件數x的函數,并求每件產品的最低成本費;
(2)如果該廠生產的這種產品的數量x不超過3000件,且產品能全部銷售,根據市場調查:每件產品的銷售價Q(x)與產品件數x有如下關系:,試問生產多少件產品,總利潤最高?(總利潤=總銷售額-總的成本)
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
一邊長為的正方形鐵片,鐵片的四角截去四個邊長均為
的小正方形,然后做成一個無蓋方盒。
(1)試把方盒的容積表示為
的函數;
(2)多大時,方盒的容積
最大?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com