【題目】將函數y=sinx的圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再將所得的圖象向左平移 個單位,得到的圖象對應的解析式是( )
A.y=sin(2x+ )
B.y=sin( x+
)
C.y=sin( x+
)
D.y=sin(2x+ )
科目:高中數學 來源: 題型:
【題目】下列關于公差d>0的等差數列{an}的四個命題:
p1:數列{an}是遞增數列;
p2:數列{nan}是遞增數列;
p3:數列 是遞增數列;
p4:數列{an+3nd}是遞增數列;
其中真命題是( )
A.p1 , p2
B.p3 , p4
C.p2 , p3
D.p1 , p4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=3x2+bx+c,不等式f(x)>0的解集為(﹣∞,﹣2)∪(0,+∞).
(1)求函數f(x)的解析式;
(2)已知函數g(x)=f(x)+mx﹣2在(2,+∞)上單調遞增,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知菱形ABCD的邊長為2,∠BAD=120°,點E,F分別在邊BC,DC上, =λ
,
=μ
,若
=1,
=﹣
,則λ+μ=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,D是直角△ABC斜邊BC上一點,AC= DC.
(Ⅰ)若∠DAC=30°,求角B的大小;
(Ⅱ)若BD=2DC,且AD= ,求DC的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)= cos2x+sin2(x+
). (Ⅰ)求f(x)的最小正周期和單調遞增區間;
(Ⅱ)當x∈[﹣ ,
)時,求f(x)的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,函數f(x)=sin(ωx+φ)(ω>0,|φ|< )離y軸最近的零點與最大值均在拋物線y=﹣
x2+
x+1上,則f(x)=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C1: 的離心率為
,焦距為
,拋物線C2:x2=2py(p>0)的焦點F是橢圓C1的頂點. (Ⅰ)求C1與C2的標準方程;
(Ⅱ)C1上不同于F的兩點P,Q滿足 ,且直線PQ與C2相切,求△FPQ的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知四棱錐P﹣ABCD的底面為直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=1,AB=2,M是PB的中點.
(1)證明:面PAD⊥面PCD;
(2)求直線AC與PB所成角的余弦值;
(3)求二面角A﹣MC﹣B的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com