【題目】如圖,在四棱錐中,底面
是邊長為1的正方形,
,
,且
,
為
的中點.
(I)求證:平面
;
(II)求直線與平面
所成角的正弦值.
【答案】(I)詳見解析(II)
【解析】
試題分析:(I)證明線面平行,一般利用線面平行判定定理,即從線線平行出發給予證明,而線線平行的尋找與論證,往往需要利用平幾知識,如本題利用三角形中位線得:連接交
于點
,則
(II)求線面角,一般利用空間向量,即先根據條件建立恰當空間直角坐標系,設立各點坐標,列方程組解面的法向量,利用向量數量積求向量夾角余弦值,最后根據線面角與向量夾角互余關系求線面角的正弦值
試題解析:解:(I)連接,交
于點
,連接
,則
是
的中點.
又∵是
的中點,∴
是
的中位線,
∴,又∵
平面
,
平面
,
∴平面
.
(II)∵,
,
,∴
平面
,
如圖,以為原點,分別以
,
,
為
,
,
軸,建立空間直角坐標系,
則,
,
,
,
∴,
,
,
設平面的一個法向量為
,由
,
得,
,令
,則
,
,
∴,又∵
,
∴,
∴直線與平面
所成角的正弦值為
.
科目:高中數學 來源: 題型:
【題目】如圖(1)所示,在直角梯形中,
,
,
,
,
是
的中點,
是
與
的交點.將△
沿
折起到△
的位置,如圖(2)所示.
(1)證明:平面
;
(2)若平面平面
,求平面
與平面
所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】簡陽羊肉湯已入選成都市級非遺項目,成為簡陽的名片。當初向各地作了廣告推廣,同時廣告對銷售收益也有影響。在若干地區各投入4萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數據丟失,但可以確定橫軸是從0開始計數的.
(Ⅰ)根據頻率分布直方圖,計算圖中各小長方形的寬度;
(Ⅱ)根據頻率分布直方圖,估計投入4萬元廣告費用之后,并將各地銷售收益的平均值(以各組的區間中點值代表該組的取值);
(Ⅲ)按照類似的研究方法,測得另外一些數據,并整理得到下表:
廣告投入x(單位:萬元) | 1 | 2 | 3 | 4 | 5 |
銷售收益y(單位:百萬元) | 2 | 3 | 2 | 7 |
表中的數據顯示,與
之間存在線性相關關系,請將(Ⅱ)的結果填入空白欄,并計算
關于
的回歸方程.回歸直線的斜率和截距的最小二乘估計公式分別為
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C:x2+y2=9,點A(-5,0),直線l:x-2y=0.
(1)求與圓C相切,且與直線l垂直的直線方程;
(2)在直線OA上(O為坐標原點),存在定點B(不同于點A),滿足:對于圓C上任一點P,都有為一常數,試求所有滿足條件的點B的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)求函數的極值;
(2)對于曲線上的不同兩點,如果存在曲線上的點
,且
使得曲線在點
處的切線
,則稱
為弦
的伴隨直線,特別地,當
時,又稱
為
的
—伴隨直線.
①求證:曲線的任意一條弦均有伴隨直線,并且伴隨直線是唯一的;
②是否存在曲線,使得曲線
的任意一條弦均有
—伴隨直線?若存在,給出一條這樣的曲線,并證明你的結論;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,短軸一個端點到右焦點的距離為
.
(1) 求橢圓的方程;
(2) 設直線與橢圓
交于
、
兩點,坐標原點
到直線
的距離為
,求
面積的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com