日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知向量
a
=(cosα,sinα)
(0<α<
π
2
)
b
=(cosβ,sinβ)
(-
π
2
<β<0)
|
a
-
b
|=
2
5
5
,求sin(α-β)的值.
分析:利用已知條件,求出
a
-
b
,然后通過|
a
-
b
|=
2
5
5
,求出cos(α-β),根據角的范圍,利用同角三角函數的基本關系式求出sin(α-β)的值.
解答:解∵
a
=(cosα,sinα)
b
=(cosβ,sinβ)

a
-
b
=(cosα-cosβ,sinα-sinβ)

|
a
-
b
|=
2
5
5

(cosα-cosβ)2+(sinα-sinβ)2
=
2
5
5

即  2-2cos(α-β)=
4
5

cos(α-β)=
3
5

0<α<
π
2
-
π
2
<β<0

∴0<α-β<π
sin(α-β)=
1-cos2(α-β)
=
1-(
3
5
)
2
=
4
5
點評:本題通過向量的模,同角三角函數的基本關系式,求解三角函數值的方程,注意角的范圍,避免錯解,考查計算能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知向量
a
=(-cosα,1+sinα)
b
=(2sin2
α
2
,sinα)

(Ⅰ)若|
a
+
b
|=
3
,求sin2α的值;
(Ⅱ)設
c
=(cosα,2)
,求(
a
+
c
)•
b
的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(cosωx-sinωx,sinωx)
b
=(-cosωx-sinωx,2
3
cosωx)
,其中ω>0,且函數f(x)=
a
b
(λ為常數)的最小正周期為π.
(Ⅰ)求函數y=f(x)的圖象的對稱軸;
(Ⅱ)若函數y=f(x)的圖象經過點(
π
4
,0)
,求函數y=f(x)在區間[0,
12
]
上的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(cos
θ
2
,sin
θ
2
)
b
=(2,1)
,且
a
b

(1)求tanθ的值;
(2 )求
cos2θ
2
cos(
π
4
+θ)•sinθ
的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(cos(ωx-
π
6
),  sin(ωx-
π
4
)),  
b
=(sin(
2
3
π-ωx), sin(ωx+
π
4
))
(其中ω>0).若函數f(x)=2
a
b
-1
的圖象相鄰對稱軸間距離為
π
2

(Ⅰ)求ω的值;
(Ⅱ)求f(x)在[-
π
12
,  
π
2
]
上的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(cosθ,sinθ),
b=
(cos2θ-1,sin2θ),
c
=(cos2θ,sin2θ-
3
)
.其中θ≠kπ,k∈Z.
(1)求證:
a
b

(2)設f(θ)=
a
c
,且θ∈(0,π),求f(θ)
的值域.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 亚洲色图自拍 | 99这里只有精品 | 热久久久 | 国产在线一区二区 | 99久久99久久精品国产片果冻 | 久久久男人天堂 | 午夜视频免费网站 | 欧美精品久久久久久久久久丰满 | 伊人免费观看视频 | 亚洲久久| 蜜桃做爰免费网站 | www.com久久| 免费久久精品 | 亚洲精品久久一区二区三区 | 亚洲三级在线播放 | 亚洲精品国偷拍自产在线观看蜜桃 | 日韩在线欧美 | 久久久久久久久久久久99 | 另类久久| 精品国产一区二区三区成人影院 | 久久久久99精品国产片 | 日本一本视频 | 一级片观看| 国产精品第2页 | 免费看的黄网站 | 成年免费视频黄网站在线观看 | 日韩拍拍| 亚洲协和影视 | 欧美一区二区在线播放 | julia中文字幕久久一区二区 | 久久久久久亚洲 | 日韩免费看 | 成人欧美一区二区三区在线湿哒哒 | 精品视频在线观看一区二区 | 国产精品日韩欧美一区二区三区 | 欧美激情精品 | www.亚洲| 日韩久久成人 | 男女羞羞视频在线 | 精品在线一区二区三区 | 日韩精品专区在线影院重磅 |