【題目】設(shè).
(1)求證:在區(qū)間
上沒有零點;
(2)若不等式對任意的
恒成立,求實數(shù)
的取值范圍.
【答案】(1)證明見解析;(2).
【解析】
(1)利用導(dǎo)數(shù)可求得在
上是增函數(shù),可得
,由此得到結(jié)論;
(2)解法一:利用放縮的方式可知,則只需
即可;利用導(dǎo)數(shù)可證得
,由
時,
可確定此時滿足題意;由
時,存在實數(shù)
,使得任意
,均有
,可知存在
,不滿足題意;
解法二:構(gòu)造函數(shù),求導(dǎo)后,分別在
和
兩種情況下根據(jù)導(dǎo)函數(shù)的符號確定函數(shù)單調(diào)性,由此可確定
符合題意.
(1),則
,
設(shè),則
,
當(dāng)時,
,即
為增函數(shù),
,
在
上是增函數(shù),
,
在區(qū)間
上沒有零點;
(2)解法一:由(1)知:當(dāng)時,
,
,
,
設(shè),則
,
設(shè),則
,當(dāng)
時,
,
在
上為增函數(shù),
,即
,
在
上為增函數(shù),
,即
,
所以對任意的
恒成立.
又,
時,
,
所以當(dāng)時,
對任意的
恒成立;
當(dāng)時,設(shè)
,則
,
,所以存在實數(shù)
,使得任意
,均有
,
所以在
上為減函數(shù),
當(dāng)
時,
,即
,
時不符合題意;
綜上所述:實數(shù)的取值范圍為
.
解法二:等價于
設(shè),則
,
設(shè),則
當(dāng)時,
,
單調(diào)遞減,
當(dāng)時,
,
單調(diào)遞增,
當(dāng)
時,
,當(dāng)
時,
,
,
所以當(dāng)時,
恒成立,
在
上是增函數(shù),
所以,即
,即
所以當(dāng)時,
對任意
恒成立.
當(dāng)時,
,
存在
,當(dāng)
時,
,
在
上是減函數(shù),
當(dāng)
時,
,
即,不符合題意,故
不滿足題意,
綜上所述,的取值范圍是
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,將曲線
:
上的點按坐標(biāo)變換
,得到曲線
,
為
與
軸負(fù)半軸的交點,經(jīng)過點
且傾斜角為
的直線
與曲線
的另一個交點為
,與曲線
的交點分別為
,
(點
在第二象限).
(Ⅰ)寫出曲線的普通方程及直線
的參數(shù)方程;
(Ⅱ)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在棱長為1的正方體中,
,
,
分別是線段
,
,
的中點,又
,
分別在線段
,
上,且
.設(shè)平面
平面
,現(xiàn)有下列結(jié)論:
①平面
;
②;
③直線與平面
不垂直;
④當(dāng)變化時,
不是定直線.
其中不成立的結(jié)論是______.(填序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點為極點,
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(Ⅰ)求直線的普通方程和曲線
的直角坐標(biāo)方程;
(Ⅱ)設(shè)為曲線
上的點,
,垂足為
,若
的最小值為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】東莞的輕軌給市民出行帶來了很大的方便,越來越多的市民選擇乘坐輕軌出行,很多市民都會開汽車到離家最近的輕軌站,將車停放在輕軌站停車場,然后進(jìn)站乘輕軌出行,這給輕軌站停車場帶來很大的壓力.某輕軌站停車場為了解決這個問題,決定對機(jī)動車停車施行收費制度,收費標(biāo)準(zhǔn)如下:4小時內(nèi)(含4小時)每輛每次收費5元;超過4小時不超過6小時,每增加一小時收費增加3元;超過6小時不超過8小時,每增加一小時收費增加4元,超過8小時至24小時內(nèi)(含24小時)收費30元;超過24小時,按前述標(biāo)準(zhǔn)重新計費.上述標(biāo)準(zhǔn)不足一小時的按一小時計費.為了調(diào)查該停車場一天的收費情況,現(xiàn)統(tǒng)計1000輛車的停留時間(假設(shè)每輛車一天內(nèi)在該停車場僅停車一次),得到下面的頻數(shù)分布表:
| ||||||
頻數(shù)(車次) | 100 | 100 | 200 | 200 | 350 | 50 |
以車輛在停車場停留時間位于各區(qū)間的頻率代替車輛在停車場停留時間位于各區(qū)間的概率.
(1)現(xiàn)在用分層抽樣的方法從上面1000輛車中抽取了100輛車進(jìn)行進(jìn)一步深入調(diào)研,記錄并統(tǒng)計了停車時長與司機(jī)性別的列聯(lián)表:
男 | 女 | 合計 | |
不超過6小時 | 30 | ||
6小時以上 | 20 | ||
合計 | 100 |
完成上述列聯(lián)表,并判斷能否有90%的把握認(rèn)為“停車是否超過6小時”與性別有關(guān)?
(2)(i)表示某輛車一天之內(nèi)(含一天)在該停車場停車一次所交費用,求
的概率分布列及期望
;
(ii)現(xiàn)隨機(jī)抽取該停車場內(nèi)停放的3輛車,表示3輛車中停車費用大于
的車輛數(shù),求
的概率.
參考公式:,其中
0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.780 | 1.323 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種昆蟲的日產(chǎn)卵數(shù)和時間變化有關(guān),現(xiàn)收集了該昆蟲第1天到第5天的日產(chǎn)卵數(shù)據(jù):
第x天 | 1 | 2 | 3 | 4 | 5 |
日產(chǎn)卵數(shù)y(個) | 6 | 12 | 25 | 49 | 95 |
對數(shù)據(jù)初步處理后得到了如圖所示的散點圖和表中的統(tǒng)計量的值.
15 | 55 | 15.94 | 54.75 |
(1)根據(jù)散點圖,利用計算機(jī)模擬出該種昆蟲日產(chǎn)卵數(shù)y關(guān)于x的回歸方程為(其中e為自然對數(shù)的底數(shù)),求實數(shù)a,b的值(精確到0.1);
(2)根據(jù)某項指標(biāo)測定,若日產(chǎn)卵數(shù)在區(qū)間(e6,e8)上的時段為優(yōu)質(zhì)產(chǎn)卵期,利用(1)的結(jié)論,估計在第6天到第10天中任取兩天,其中恰有1天為優(yōu)質(zhì)產(chǎn)卵期的概率.
附:對于一組數(shù)據(jù)(v1,μ1),(v2,μ2),…,(vn,μn),其回歸直線的斜率和截距的最小二乘估計分別為,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的焦距是
,長軸長是短軸長3倍,任作斜率為
的直線
與橢圓
交于
兩點(如圖所示),且點
在直線
的左上方.
(1)求橢圓的方程;
(2)若,求
的面積;
(3)證明:的內(nèi)切圓的圓心在一條定直線上。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4—4:坐標(biāo)系與參數(shù)方程]
以平面直角坐標(biāo)系的原點為極點,x軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位.已知直線l的參數(shù)方程是 (t為參數(shù)),圓C的極坐標(biāo)方程是ρ=4cos θ,求直線l被圓C截得的弦長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com