日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)定義在D=[-m,m](m>2)上且f(x)>0,對于任意實數x,y,x+y∈D,都有f(x+y)=f(x)f(y),且f(1)=1006,設函數g(x)=
f(2x)+f(x+1)+f(x)+1006
f(x)+1
-
1
f(x)
的最大值和最小值分別為M和N,則M+N=
2012
2012
分析:利用f(x+y)=f(x)f(y),且f(1)=1006,化簡函數,再利用奇函數的性質,即可求得結論.
解答:解:由題意,g(x)=
f(2x)+f(x+1)+f(x)+1006
f(x)+1
-
1
f(x)
=g(x)=
f(2x)+1006f(x)+f(x)+1006
f(x)+1
-
1
f(x)

=
f(2x)+f(x)
f(x)+1
-
1
f(x)
+1006=f(x)-
1
f(x)
+1006
∵h(x)=f(x)-
1
f(x)
,∴h(-x)=-h(x),
∴函數h(x)是奇函數
∵函數g(x)=
f(2x)+f(x+1)+f(x)+1006
f(x)+1
-
1
f(x)
的最大值和最小值分別為M和N,
∴M+N=2012
故答案為:2012.
點評:本題考查抽象函數,考查函數的化簡,考查奇函數的性質,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)定義在(-1,1)上,對于任意的x,y∈(-1,1),有f(x)+f(y)=f(
x+y
1+xy
)
,且當x<0時,f(x)>0.
(Ⅰ)驗證函數f(x)=ln
1-x
1+x
是否滿足這些條件;
(Ⅱ)判斷這樣的函數是否具有奇偶性和其單調性,并加以證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)定義在R上,并且對于任意實數x,y都有f(x+y)=f(x)+f(y)成立,且x≠y時,f(x)≠f(y),x>0時,有f(x)>0.
(1)判斷f(x)的奇偶性;
(2)若f(1)=1,解關于x的不等式f(x)-f(
1x-1
)≥2

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•連云港二模)已知函數f(x)定義在正整數集上,且對于任意的正整數x,都有f(x+2)=2f(x+1)-f(x),且f(1)=2,f(3)=6,則f(2009)=
4018
4018

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)定義在區間(-1,1)上,f(
1
2
)=-1,且當x,y∈(-1,1)時,恒有f(x)-f(y)=f(
x-y
1-xy
),又數列{an}滿足:a1=
1
2
,an+1=
2an
1+
a
2
n

(I)證明:f(x)在(-1,1)上為奇函數;
(II)求f(an)關于n的函數解析式;
(III)令g(n)=f(an)且數列{an}滿足bn=
1
g(n)
,若對于任意n∈N+,都有b1+b2+…+bnt2-3t恒成立,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)定義在R上,對任意的x∈R,f(x+1001)=
2
f(x)
+1
,已知f(11)=1,則f(2013)=
 

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久久国产一区 | 国产精品美女 | 三级亚洲 | 毛片网站免费观看 | 亚洲精品在线视频 | 欧美 日韩 在线播放 | 欧美极品一区二区三区 | 亚洲二区在线 | 午夜视频免费网站 | 91嫩草在线| 精品伊人 | 久久精品视频网 | 欧美国产激情 | 可以免费看黄的网站 | 欧美日韩不卡合集视频 | 蜜桃在线视频 | av片在线观看 | 欧美videosex性欧美黑吊 | 狠狠操操 | 在线免费观看黄色 | 黄色大片视频网站 | 国产91色在线 | 亚洲 | 亚洲日本乱码在线观看 | 日本亚洲国产一区二区三区 | 日本激情网 | 国产黄色大片 | 日本二区在线观看 | 午夜精品在线 | 日本特黄a级高清免费大片 综合一区二区三区 | 国产一级视频免费播放 | 中文字幕日韩一区二区 | 九九热在线免费观看 | 日本免费一区二区三区 | 久久6 | h色网站免费观看 | 免费一级淫片 | 9se成人免费网站 | 日韩成人免费视频 | 国产97久久 | 亚洲视频在线观看免费 | 涩涩在线 |