【題目】已知橢圓C:1(a>b>0)的離心率e
,且點P(
,1)在橢圓C上.
(1)求橢圓C的方程;
(2)若橢圓C的左焦點為F,右頂點為A,點M(s,t)(t>0)是橢圓C上的動點,直線AM與y軸交于點D,點E是y軸上一點,EF⊥DF,EA與橢圓C交于點G,若△AMG的面積為2,求直線AM的方程.
【答案】(1)(2)x
y﹣2=0
【解析】
(1)利用離心率和橢圓經過的點建立方程組,可以求解方程;
(2)設出直線方程,聯立方程組,結合三角形的面積為2可得直線斜率,從而可得方程.
(1)由題意得e,
,a2=b2+c2,解得:a2=4,b2=2,
所以橢圓的方程:.
(2)由(1)得左焦點F(,0),A(2,0),設直線AM:y=k(x﹣2),由題意得D(0,﹣2k),∴kDF
k,
∵EF⊥DF,∴kEF,∴直線EF的方程:x
,
令x=0,則y,所以點E(0,
),所以kEA
,
所以直線EA:x=﹣2ky+2,聯立與橢圓的方程整理得:∴y,x
,所以點G(
,
);
聯立直線AM與橢圓的方程整理得:(1+2k2)x2﹣8k2x+8k2﹣4=0,解得:x1=2,x2,∴y2
,所以點M(
,
),
所以點M,G關于原點對稱,即直線MG過原點,
∴S△AMG2|yM|
,由題意得:
2
,解得:k
,
由點M(s,t)(t>0)得,k,所以直線AM為:y
(x﹣2),
即直線AM:xy﹣2=0.
科目:高中數學 來源: 題型:
【題目】如圖,在多面體ABCDEF中,四邊形ABCD是菱形,AC,BD相交于點O,EF∥AB,EFAB,平面BCF⊥平面ABCD,BF=CF,G為BC的中點,求證:
(1)OG∥平面ABFE;
(2)AC⊥平面BDE.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數h(x)是定義在(﹣2,2)上,滿足h(﹣x)=﹣h(x),且x∈(0,2)時,h(x)=﹣2x,當x∈(﹣2,0)時,不等式[h(x)+2]2>h(x)m﹣1恒成立,則實數m的取值范圍是_____.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:(
),其中離心率
,點
為橢圓
上的動點,
為橢圓的左右焦點,若
面積的最大值為
.
(1)求橢圓的標準方程;
(2)直線 交橢圓
于
兩點,點
是橢圓
的上頂點,若
,試問直線
是否經過定點,若經過定點,求出定點坐標,否則說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示的多面體ABCDEF滿足:正方形ABCD與正三角形FBC所在的兩個平面互相垂直,FB∥AE且FB=2EA.
(1)證明:平面EFD⊥平面ABFE;
(2)求二面角E﹣FD﹣C的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數是R上的偶函數,對于
都有
成立,且
,當
,且
時,都有
.則給出下列命題:
①;
②函數圖象的一條對稱軸為
;
③函數在[﹣9,﹣6]上為減函數;④方程
在[﹣9,9]上有4個根;
其中正確的命題序號是___________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x3(a>0且a≠1).
(1)求函數f(x)的定義域;
(2)討論函數f(x)的奇偶性;
(3)求a的取值范圍,使f(x)>0在定義域上恒成立.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知公差不為零的等差數列中,
,且
,
,
成等比數列,
(1)求數列的通項公式;
(2)數列滿足
,數列
的前n項和為
,若不等式
對一切
恒成立,求
的取值范圍.
(3)設數列的前n項和為
,求證:對任意正整數n,都有
成立.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com