日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=aex+x2-ax,a為實常數.
(1)若f(x)在x=0處的切線,與x=1處的切線平行,求a的值;
(2)是否存在實數a,使得對于任意不相等的實數x1,x2,都有f(x1)≠f(x2),若存在,求出所有符合條件的a,若不存在,說明理由.
分析:(1)根據f′(x)=aex+2x-a,可得f′(0)=0,由f(x)在x=0處的切線與x=1處的切線平行,可得f′(1)=0,可解得a的值,再說明兩切線不重合即可;
(2)設g(x)=f′(x)=aex+2x-a,則g′(x)=aex+2,分類討論:當a≥0時,g′(x)>0,故f′(x)在R上單調遞增,進而可得x∈(-∞,0)時,f(x)單調遞減;x∈(0,+∞)時,f(x)單調遞增; 當a<0時,g′(x)在R上單調遞減,令g′(x0)=0,解得x0=ln(-
2
a
)
,a<-2、-2<a<0時,同理可得存在實數x1<0<x2,使得f(x1)=f(x2);a=-2時,可得f(x)在R上單調遞減,由此可得結論.
解答:解:(1)因為f′(x)=aex+2x-a,(1分)  
所以f′(0)=0,(2分)
因為f(x)在x=0處的切線與x=1處的切線平行,所以f′(1)=ae+2-a=0,解得a=
2
1-e
.      (3分)
a=
2
1-e
時,f(0)=a=
2
1-e
,f(1)=ae+1-a=(e-1)a+1=-1,f(0)≠f(1),即兩切線不重合,故a=
2
1-e
.      (5分)
(2)設g(x)=f′(x)=aex+2x-a,則g′(x)=aex+2,
。 當a≥0時,g′(x)>0,故f′(x)在R上單調遞增,
而f′(0)=0,故x∈(-∞,0)時,f′(x)<0,f(x)單調遞減;
x∈(0,+∞)時,f′(x)>0,f(x)單調遞增.
故必存在實數x1<0<x2,使得f(x1)=f(x2);      (7分)
ⅱ. 當a<0時,g′(x)在R上單調遞減,令g′(x0)=0,解得x0=ln(-
2
a
)
,
①若x0<0,即a<-2時,g′(x)<0在(x0,+∞)上恒成立,故f′(x)在(x0,+∞)上單調遞減,而f′(0)=0,所以x∈(x0,0)時,f′(x)>0,f(x)單調遞增;x∈(0,+∞)時,f′(x)<0,f(x)單調遞減.
故必存在實數x1<0<x2,使得f(x1)=f(x2);      (9分)
②若x0>0,即-2<a<0時,g′(x)>0在(-∞,x0)上恒成立,
f′(x)在(-∞,x0)上單調遞增,而f′(0)=0,所以x∈(-∞,0)時,f′(x)<0,f(x)單調遞減,
x∈(0,x0)時,f′(x)>0,f(x)單調遞增
故必存在實數x1<0<x2,使得f(x1)=f(x2);         (11分)
③若x0=0,即a=-2時,x0=0,故當x∈(-∞,0)時,g′(x)>0,f′(x)遞增,所以f′(x)<f′(0)=0,
當x∈(0,+∞)時,g′(x)<0,,f′(x)遞減,所以f′(x)<f′(0)=0,
所以當x∈R時,f′(x)≤0恒成立,當且僅當x=0時,f′(x)=0
故f(x)在R上單調遞減,所以對于任意不相等的實數x1、x2,都有f(x1)≠f(x2),
綜上ⅰ、ⅱ可知,存在這樣的實數a,當且僅當a=-2時對于任意不相等的實數x1、x2,都有f(x1)≠f(x2).     (13分)
點評:本題考查導數知識的運用,考查導數的幾何意義,考查函數的單調性,考查分類討論的數學思想,正確分類是關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•海淀區二模)已知函數f(x)=a-2x的圖象過原點,則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a|x|的圖象經過點(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a•2x+b•3x,其中常數a,b滿足a•b≠0
(1)若a•b>0,判斷函數f(x)的單調性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a-2|x|+1(a≠0),定義函數F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數F(x)是奇函數;③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产欧美久久一区二区三区 | 亚洲毛片网| 亚洲精品美女久久久 | 国产精品无码永久免费888 | 久久天堂 | 成人影院欧美黄色 | 久久久婷婷 | 欧美精品久久久久久精华液 | 一区二区免费视频观看 | 免费高清av| 久久亚洲一区 | 欧美国产在线观看 | 亚洲一区国产二区 | 91在线视频免费播放 | 成人爽a毛片免费啪啪动漫 日本特级片 | 91精品一区二区三区久久久久久 | 亚洲免费在线观看 | 久久国产精品久久精品 | 国产视频福利在线 | 久久99国产精一区二区三区 | 欧美日韩精品一区二区三区在线观看 | 99久久婷婷国产精品综合 | 中文字幕av一区二区三区 | 欧美日韩免费看 | 成人黄色在线视频 | 国产超碰人人模人人爽人人添 | 中文字幕国产高清 | 日本综合视频 | 日韩综合| 国产99久久久久久免费看农村 | 九色在线 | 日本黄区免费视频观看 | 国产精品欧美一区二区三区 | 亚洲天堂成人 | 日韩免费网站 | 亚洲视频一区二区三区 | 成人午夜精品一区二区三区 | 亚州av在线| 精品国产污网站污在线观看15 | 四虎精品成人免费网站 | 国产噜噜噜噜噜久久久久久久久 |