【題目】根據如下所示的列聯表得到如下四個判斷:①在犯錯誤的概率不超過0.001的前提下認為患肝病與嗜酒有關;②在犯錯誤的概率不超過0.01的前提下認為患肝病與嗜酒有關;③認為患肝病與嗜酒有關的出錯的可能為0.001%;④沒有證據顯示患肝病與嗜酒有關.
分類 | 嗜酒 | 不嗜酒 | 總計 |
患肝病 | 7 775 | 42 | 7 817 |
未患肝病 | 2 099 | 49 | 2 148 |
總計 | 9 874 | 91 | 9 965 |
其中正確命題的個數為( )
A. 1 B. 2 C. 3 D. 4
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ex﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…為自然對數的底數.
(1)設g(x)是函數f(x)的導函數,求函數g(x)在區間[0,1]上的最小值;
(2)若f(1)=0,函數f(x)在區間(0,1)內有零點,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】觀察下列各等式(i為虛數單位):
(cos 1+isin 1)(cos 2+isin 2)=cos 3+isin 3;
(cos 3+isin 3)(cos 5+isin 5)=cos 8+isin 8;
(cos 4+isin 4)(cos 7+isin 7)=cos 11+isin 11;
(cos 6+isin 6)(cos 6+isin 6)=cos 12+isin 12.
記f(x)=cos x+isin x.
猜想出一個用f (x)表示的反映一般規律的等式,并證明其正確性;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數f(x)=kax﹣a﹣x(a>0且a≠1)在(﹣∞,+∞)上既是奇函數又是增函數,則函數g(x)=loga(x+k)的圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設等差數列{an}的前n項和為Sn , ,若
,且S11=143,數列{bn}的前n項和為Tn , 且滿足
.
(1)求數列{an}的通項公式及數列 的前n項和Mn
(2)是否存在非零實數λ,使得數列{bn}為等比數列?并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某書店共有韓寒的圖書6種,其中價格為25元的有2種,18元的有3種,16元的有1種.書店若把這6種韓寒的圖書打包出售,據統計每套的售價與每天的銷售數量如下表所示:
售價x/元 | 105 | 108 | 110 | 112 |
銷售數量y/套 | 40 | 30 | 25 | 15 |
(1)根據上表,利用最小二乘法得到回歸直線方程,求
;
(2)若售價為100元,則每天銷售的套數約為多少(結果保留到整數)?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有甲乙兩個班級進行數學考試,按照大于等于85分為優秀,85分以下為非優秀統計成績后,得到如下的列聯表.
優秀 | 非優秀 | 總計 | |
甲班 | 10 | ||
乙班 | 30 | ||
合計 | 105 |
已知在全部105人中隨機抽取一人為優秀的概率為.
(1)請完成上面的列聯表;
(2)根據列聯表的數據,若按97.5%的可靠性要求,能否認為“成績與班級有關系”;
(3)若按下面的方法從甲班優秀的學生抽取一人:把甲班優秀的10名學生從2到11進行編號,先后兩次拋擲一枚均勻的骰子,出現的點數之和為被抽取人的序號.試求抽到10或11號的概率.
參考公式和數據:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)是定義在R上的函數,它的圖象關于點(1,0)對稱,當x≤1時,f(x)=2xe﹣x(e為自然對數的底數),則f(2+3ln2)的值為( )
A.48ln2
B.40ln2
C.32ln2
D.24ln2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現有7名數理化成績優秀者,其中A1,A2,A3數學成績優秀,B1,B2物理成績優秀,C1,C2化學成績優秀,從中選出數學、物理、化學成績優秀者各1名,組成一個小組代表學校參加競賽.
(1)求C1被選中的概率;
(2)求A1,B1不全被選中的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com