日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

(2013•門頭溝區(qū)一模)如圖已知平面α,β,且α∩β=AB,PC⊥α,PD⊥β,C,D是垂足.
(Ⅰ)求證:AB⊥平面PCD;
(Ⅱ)若PC=PD=1,CD=
2
,試判斷平面α與平面β的位置關(guān)系,并證明你的結(jié)論.
分析:對于問題(Ⅰ),要證明AB⊥平面PCD,只需證明垂直于平面PCD內(nèi)的兩條相交直線,根據(jù)本題的條件,只需證明AB⊥PC,AB⊥PD即可,而條件中的PC⊥α,PD⊥β,由線面垂直的定義可以得到PC⊥AB,PD⊥AB,問題得以解決;對于問題(Ⅱ),由于兩個平面已經(jīng)相交,所以應該考慮二者是否垂直,而由問題(Ⅰ)的結(jié)論,容易作出C-AB-D的平面角∠CHD,而PC=PD=1,CD=
2
能夠得到∠CPD=90°,由平面四邊形內(nèi)角定理,容易得到∠CHD=90°,由面面垂直的定義可以得證.
解答:解:(Ⅰ)因為PC⊥α,AB?α,所以PC⊥AB.同理PD⊥AB.
又PC∩PD=P,故AB⊥平面PCD.(5分)
(Ⅱ)設AB與平面PCD的交點為H,連接CH、DH.因為AB⊥平面PCD,
所以AB⊥CH,AB⊥DH,所以∠CHD是二面角C-AB-D的平面角.
PC=PD=1,CD=
2
,所以CD2=PC2+PD2=2,即∠CPD=90°.
在平面四邊形PCHD中,∠PCH=∠PDH=∠CPD=90°,
所以∠CHD=90°.故平面α⊥平面β.(14分)
點評:本題考查直線與平面垂直的判定以及平面與平面垂直的判定,根據(jù)判定定理,證明線面垂直往往轉(zhuǎn)化為證線線垂直,而線線垂直的證明往往還需要線面垂直來得到,要注意二者之間的轉(zhuǎn)化關(guān)系,對于面面垂直,定義也是常用的方法.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2013•門頭溝區(qū)一模)為得到函數(shù)y=sin(π-2x)的圖象,可以將函數(shù)y=sin(2x-
π
3
)的圖象(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•門頭溝區(qū)一模)定義在(-∞,0)∪(0,+∞)上的函數(shù)f(x),如果對于任意給定的等比數(shù)列{an},{f(an)}仍是等比數(shù)列,則稱f(x)為“等比函數(shù)”.現(xiàn)有定義在(-∞,0)∪(0,+∞)上的如下函數(shù):
①f(x)=2x
②f(x)=log2|x|;
③f(x)=x2
④f(x)=ln2x
則其中是“等比函數(shù)”的f(x)的序號為
③④
③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•門頭溝區(qū)一模)已知數(shù)列{An}的前n項和為Sn,a1=1,滿足下列條件
①?n∈N*,an≠0;
②點Pn(an,Sn)在函數(shù)f(x)=
x2+x2
的圖象上;
(I)求數(shù)列{an}的通項an及前n項和Sn
(II)求證:0≤|Pn+1Pn+2|-|PnPn+1|<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•門頭溝區(qū)一模)已知函數(shù)f(x)=
2,        x≥0
x2+4x+2,  x<0
的圖象與直線y=k(x+2)-2恰有三個公共點,則實數(shù)k的取值范圍是(  )

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久草福利在线视频 | 午夜剧场黄 | 天天天综合网 | 国产精品美女久久久久久久久久久 | 日韩一区二区在线观看视频 | 91日韩精品一区二区三区 | 欧美一区二区三区啪啪 | 激情视频在线观看免费 | 四虎最新紧急更新地址 | 日韩一区二区免费视频 | 成人在线影视 | 日本一区二区高清 | 午夜亚洲电影 | 色黄视频在线 | 欧美2区| 一级欧美日韩 | 最黄的网站 | 久久国产精品久久久久久电车 | 日韩精品免费在线 | 国产不卡二区 | 国产一页| 一区二区三区 在线 | 欧美日韩成人影院 | 国精产品一区二区三区黑人免费看 | www久久精品 | 99精品国产在热久久 | av播放在线 | 亚洲第一视频 | 中文字幕免费在线 | 色爱区综合| 国产精品xxxx| 97精品超碰一区二区三区 | 久久久久久影院 | 久久一区二区视频 | 午夜视频在线观看网站 | 国产成人精品一区二区三区视频 | 欧美精品在线观看 | 在线观看免费av电影 | 免费黄色福利网站 | 精品久久久久久久久久 | 成人精品一区二区 |